Singularities of quasi-linear differential equations
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 85-105

Voir la notice de l'article provenant de la source Math-Net.Ru

We study solutions of quasi-linear ordinary differential equations of the second order at their singular points, where the coefficient of the second-order derivative vanishes. Either solutions entering a singular point with definite tangential direction (proper solutions) or those without definite tangential direction (oscillating solutions) are considered. It is shown that oscillating solutions generically do not exist, and proper solutions enter a singular point in strictly definite tangential directions. A local representation for proper solutions in a form similar to Newton–Puiseux series is obtained.
@article{DVMG_2023_23_1_a7,
     author = {A. O. Remizov},
     title = {Singularities of quasi-linear differential equations},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {85--105},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a7/}
}
TY  - JOUR
AU  - A. O. Remizov
TI  - Singularities of quasi-linear differential equations
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 85
EP  - 105
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a7/
LA  - ru
ID  - DVMG_2023_23_1_a7
ER  - 
%0 Journal Article
%A A. O. Remizov
%T Singularities of quasi-linear differential equations
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 85-105
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a7/
%G ru
%F DVMG_2023_23_1_a7
A. O. Remizov. Singularities of quasi-linear differential equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 85-105. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a7/