Optimization method for solving the inverse problem of complex heat transfer
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 81-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimization method for solving the inverse problem for stationary equations of complex heat transfer with an unspecified boundary condition for the radiation intensity on part of the boundary and an overdetermination condition on the other part of the boundary is proposed. An analysis of a boundary optimal control problem is presented and it is shown that the sequence of solutions of control problems converges to the solution of the inverse problem.
@article{DVMG_2023_23_1_a6,
     author = {P. R. Mesenev},
     title = {Optimization method for solving the inverse problem of complex heat transfer},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {81--84},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a6/}
}
TY  - JOUR
AU  - P. R. Mesenev
TI  - Optimization method for solving the inverse problem of complex heat transfer
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 81
EP  - 84
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a6/
LA  - en
ID  - DVMG_2023_23_1_a6
ER  - 
%0 Journal Article
%A P. R. Mesenev
%T Optimization method for solving the inverse problem of complex heat transfer
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 81-84
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a6/
%G en
%F DVMG_2023_23_1_a6
P. R. Mesenev. Optimization method for solving the inverse problem of complex heat transfer. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 81-84. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a6/

[1] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409 (2014), 808–815 | DOI | MR | Zbl

[2] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, American Math. Soc., 2000 | MR | Zbl