Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet box principle gives surprisingly accurate results in problems of approximation of real numbers by rational numbers, transcendental numbers by real algebraic numbers. Every polynomial taking small values at a given point $x$ also takes small values in its neighborhood. A problem of studying such neighborhoods and obtaining possible Lebesgue measure values arises frequently. In this paper we solve the problem in the p-adic case using recent results of the metric theory of Diophantine approximations.
@article{DVMG_2023_23_1_a0,
     author = {V. I. Bernik and A. S. Kudin and A. V. Titova},
     title = {Distinction of measures of {Haar} cylinders in the {Dirichlet} theorem for the field of p-adic numbers},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--11},
     year = {2023},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - A. S. Kudin
AU  - A. V. Titova
TI  - Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 3
EP  - 11
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/
LA  - ru
ID  - DVMG_2023_23_1_a0
ER  - 
%0 Journal Article
%A V. I. Bernik
%A A. S. Kudin
%A A. V. Titova
%T Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 3-11
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/
%G ru
%F DVMG_2023_23_1_a0
V. I. Bernik; A. S. Kudin; A. V. Titova. Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/

[1] V. G. Sprindzhuk, Problema Malera v metricheskoi teorii chisel, Moskva, 1967 | MR

[2] V. G. Sprindzhuk, Metricheskaya teoriya diofantovykh priblizhenii, Moskva, 1977

[3] B. Volkmann, “The real cubic case of Mahler’s conjecture”, Mathematika, 136:5 (1961) | MR

[4] V. Bernik, F. Götze, Distribution of real algebraic numbers of arbitrary degree in short intervals, v. 79, 2015 | MR

[5] K. Mahler, “Uber das Mass der Menge aller $S$-Zahlen”, Mathematische Annalen, 106 (1932) | DOI | MR | Zbl

[6] V. I. Bernik, M. M. Dodson, “Metric Diophantine approximation on manifolds”, Cambridge Tracts in Math., 1999, Cambridge | MR

[7] A. Khintchine, “Einige sätze über kettenbrüche, mit anwendungen auf die theorie der Diophantischen approximationen”, Mathematische Annalen, 92 (1924) | DOI | MR

[8] V. I. Bernik, “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arithmetica, 53 (1989) | DOI | Zbl

[9] V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arithmetica, 90 (1999) | DOI | MR | Zbl

[10] V. Beresnevich, “A Groshev type theorem for convergence on manifolds”, Acta Mathematica Hungarica, 94 (2002) | DOI | MR | Zbl

[11] V. Bernik, D. Kleinbock, G. Margulis, “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, International Mathematics Research Notices, 9 (2001) | MR | Zbl

[12] Y. Bugeaud, “On the approximation to algebraic numbers by algebraic numbers”, Cambridge Tracts in Math, 169 (2004), Cambridge | MR

[13] V. V. Beresnevich, V. I. Bernik, E. I. Kovalevskaya, “On approximation of $p$-adic numbers by $p$-adic algebraic numbers”, Journal of Number Theory, 111 (2005) | DOI | MR | Zbl

[14] V. I. Bernik, I. L. Morotskaya, “Diofantovy priblizheniya v $Q_p$ i razmernost Khausdorfa”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 3 (1986) | MR | Zbl

[15] V. I. Bernik, I. A. Korlyukova, A. S. Kudin, A. V. Titova, “Tselochislennye mnogochleny i teorema Minkovskogo o lineinykh formakh”, Vestnik Grodnenskogo gosudarstvennogo universiteta imeni Yanki Kupaly, 2022