Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2023_23_1_a0, author = {V. I. Bernik and A. S. Kudin and A. V. Titova}, title = {Distinction of measures of {Haar} cylinders in the {Dirichlet} theorem for the field of p-adic numbers}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {3--11}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/} }
TY - JOUR AU - V. I. Bernik AU - A. S. Kudin AU - A. V. Titova TI - Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2023 SP - 3 EP - 11 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/ LA - ru ID - DVMG_2023_23_1_a0 ER -
%0 Journal Article %A V. I. Bernik %A A. S. Kudin %A A. V. Titova %T Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers %J Dalʹnevostočnyj matematičeskij žurnal %D 2023 %P 3-11 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/ %G ru %F DVMG_2023_23_1_a0
V. I. Bernik; A. S. Kudin; A. V. Titova. Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/
[1] V. G. Sprindzhuk, Problema Malera v metricheskoi teorii chisel, Moskva, 1967 | MR
[2] V. G. Sprindzhuk, Metricheskaya teoriya diofantovykh priblizhenii, Moskva, 1977
[3] B. Volkmann, “The real cubic case of Mahler’s conjecture”, Mathematika, 136:5 (1961) | MR
[4] V. Bernik, F. Götze, Distribution of real algebraic numbers of arbitrary degree in short intervals, v. 79, 2015 | MR
[5] K. Mahler, “Uber das Mass der Menge aller $S$-Zahlen”, Mathematische Annalen, 106 (1932) | DOI | MR | Zbl
[6] V. I. Bernik, M. M. Dodson, “Metric Diophantine approximation on manifolds”, Cambridge Tracts in Math., 1999, Cambridge | MR
[7] A. Khintchine, “Einige sätze über kettenbrüche, mit anwendungen auf die theorie der Diophantischen approximationen”, Mathematische Annalen, 92 (1924) | DOI | MR
[8] V. I. Bernik, “O tochnom poryadke priblizheniya nulya znacheniyami tselochislennykh mnogochlenov”, Acta Arithmetica, 53 (1989) | DOI | Zbl
[9] V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arithmetica, 90 (1999) | DOI | MR | Zbl
[10] V. Beresnevich, “A Groshev type theorem for convergence on manifolds”, Acta Mathematica Hungarica, 94 (2002) | DOI | MR | Zbl
[11] V. Bernik, D. Kleinbock, G. Margulis, “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, International Mathematics Research Notices, 9 (2001) | MR | Zbl
[12] Y. Bugeaud, “On the approximation to algebraic numbers by algebraic numbers”, Cambridge Tracts in Math, 169 (2004), Cambridge | MR
[13] V. V. Beresnevich, V. I. Bernik, E. I. Kovalevskaya, “On approximation of $p$-adic numbers by $p$-adic algebraic numbers”, Journal of Number Theory, 111 (2005) | DOI | MR | Zbl
[14] V. I. Bernik, I. L. Morotskaya, “Diofantovy priblizheniya v $Q_p$ i razmernost Khausdorfa”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 3 (1986) | MR | Zbl
[15] V. I. Bernik, I. A. Korlyukova, A. S. Kudin, A. V. Titova, “Tselochislennye mnogochleny i teorema Minkovskogo o lineinykh formakh”, Vestnik Grodnenskogo gosudarstvennogo universiteta imeni Yanki Kupaly, 2022