Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers
Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet box principle gives surprisingly accurate results in problems of approximation of real numbers by rational numbers, transcendental numbers by real algebraic numbers. Every polynomial taking small values at a given point $x$ also takes small values in its neighborhood. A problem of studying such neighborhoods and obtaining possible Lebesgue measure values arises frequently. In this paper we solve the problem in the p-adic case using recent results of the metric theory of Diophantine approximations.
@article{DVMG_2023_23_1_a0,
     author = {V. I. Bernik and A. S. Kudin and A. V. Titova},
     title = {Distinction of measures of {Haar} cylinders in the {Dirichlet} theorem for the field of p-adic numbers},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/}
}
TY  - JOUR
AU  - V. I. Bernik
AU  - A. S. Kudin
AU  - A. V. Titova
TI  - Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2023
SP  - 3
EP  - 11
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/
LA  - ru
ID  - DVMG_2023_23_1_a0
ER  - 
%0 Journal Article
%A V. I. Bernik
%A A. S. Kudin
%A A. V. Titova
%T Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2023
%P 3-11
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/
%G ru
%F DVMG_2023_23_1_a0
V. I. Bernik; A. S. Kudin; A. V. Titova. Distinction of measures of Haar cylinders in the Dirichlet theorem for the field of p-adic numbers. Dalʹnevostočnyj matematičeskij žurnal, Tome 23 (2023) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/DVMG_2023_23_1_a0/