Modeling and simulation of cerebral blood flow autoregulation considered as an output regulation control problem
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 170-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of cerebral blood flow in the form of a system of nonlinear ordinary differential equations is studied. The cerebral blood flow autoregulation modeling problem is formulated as an output regulation automatic control problem. The nonlinear dynamics inversion based approach is applied to reveal the controllability properties of the model and construct the feedback control laws which describe mathematics behind the cerebrovascular autoregulation mechanism.
@article{DVMG_2022_22_2_a6,
     author = {A. E. Golubev},
     title = {Modeling and simulation of cerebral blood flow autoregulation considered as an output regulation control problem},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {170--175},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a6/}
}
TY  - JOUR
AU  - A. E. Golubev
TI  - Modeling and simulation of cerebral blood flow autoregulation considered as an output regulation control problem
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 170
EP  - 175
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a6/
LA  - en
ID  - DVMG_2022_22_2_a6
ER  - 
%0 Journal Article
%A A. E. Golubev
%T Modeling and simulation of cerebral blood flow autoregulation considered as an output regulation control problem
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 170-175
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a6/
%G en
%F DVMG_2022_22_2_a6
A. E. Golubev. Modeling and simulation of cerebral blood flow autoregulation considered as an output regulation control problem. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 170-175. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a6/

[1] M. Ursino, C. A. Lodi, “A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics”, J. Appl. Physiol., 82 (1997), 1256–1269 | DOI

[2] R. Lampe, N. Botkin, V. Turova, T. Blumenstein, A. Alves-Pinto, “Mathematical modelling of cerebral blood circulation and cerebral autoregulation: towards preventing intracranial hemorrhages in preterm newborns”, Comp. Math. Meth. Med., 2014 (2014), 965275 | MR

[3] N. D. Botkin, A. E. Kovtanyuk, V. L. Turova, I. N. Sidorenko, R. Lampe, “Direct modeling of blood flow through the vascular network of the germinal matrix”, Comput. Biol. Med., 92 (2018), 147–155 | DOI

[4] A. Golubev, A. Kovtanyuk, R. Lampe, “Modeling of cerebral blood flow autoregulation using mathematical control theory”, Mathematics, 10 (2022), 2060 | DOI

[5] A. Isidori, Nonlinear control systems, 3rd edition, Springer-Verlag, 1995 | MR

[6] L. Rangel-Castilla, S. Gopinath, C. S. Robertson, “Management of intracranial hypertension”, Neurol. clin., 26 (2008), 521–541 | DOI

[7] A. E. Golubev, “Construction of programmed motions of constrained mechanical systems using third-order polynomials”, J. Comput. Syst. Sci. Int., 60 (2021), 303–314 | DOI | MR