Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_2_a23, author = {P. A. Vornovskikh and E. V. Ermolaev and I. V. Prokhorov}, title = {On the problem of determining the scattering coefficient in frequency modulated sounding of a medium}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {263--268}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a23/} }
TY - JOUR AU - P. A. Vornovskikh AU - E. V. Ermolaev AU - I. V. Prokhorov TI - On the problem of determining the scattering coefficient in frequency modulated sounding of a medium JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 263 EP - 268 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a23/ LA - en ID - DVMG_2022_22_2_a23 ER -
%0 Journal Article %A P. A. Vornovskikh %A E. V. Ermolaev %A I. V. Prokhorov %T On the problem of determining the scattering coefficient in frequency modulated sounding of a medium %J Dalʹnevostočnyj matematičeskij žurnal %D 2022 %P 263-268 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a23/ %G en %F DVMG_2022_22_2_a23
P. A. Vornovskikh; E. V. Ermolaev; I. V. Prokhorov. On the problem of determining the scattering coefficient in frequency modulated sounding of a medium. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 263-268. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a23/
[1] P. A. Vornovskikh, A. Kim, I. V. Prokhorov, “The applicability of the approximation of single scattering in pulsed sensing of an inhomogeneous medium”, Computer Research and Modeling, 12:5 (2020), 1063–1079 | DOI
[2] P. A. Vornovskikh, I. V. Prokhorov, “Comparative analysis of the error of the single scattering approximation when solving one inverse problem in two-dimensional and three-dimensional cases”, Dal’nevost. Mat. Zh., 21:2 (2021), 151–165 | MR
[3] C. S. Clay, H. Medwin, Acoustical Oceanography: Principal and Applications, John Wiley and Sons New, York, 1977
[4] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978 | MR
[5] G. Bal, “Kinetics of scalar wave fields in random media”, Wave Motion, 43 (2005), 132–157 | DOI | MR
[6] G. Bal, “Inverse transport theory and applications”, Inverse Problems, 25:5 (2009), 025019 | MR
[7] I. V. Prokhorov, A. A. Sushchenko, “Studying the problem of acoustic sounding of the seabed using methods of radiative transfer theory”, Acoustical Physics, 61:3 (2015), 368–375 | DOI
[8] S. Acosta, “Time reversal for radiative transport with applications to inverse and control problems”, Inverse Problems, 29 (2013), 085014 | DOI | MR
[9] I. V. Prokhorov, I. P. Yarovenko, “Determination of Refractive Indices of a Layered Medium under Pulsed Irradiation”, Optics and Spectroscopy, 124:4 (2018), 567–574 | DOI
[10] M. Bellassoued, Y. Boughanja, “An inverse problem for the linear Boltzmann equation with a time-dependent coefficient”, Inverse Problems, 35 (2019), 085003 | DOI | MR
[11] W. Dahmen, F. Gruber, O. Mula, “An adaptive nested source term iteration for radiative transfer equations”, Math. Comp, 89 (2020), 1605–1646 | DOI | MR
[12] Q. Li, W. Sun, “Applications of kinetic tools to inverse transport problems”, Inverse Problems, 36 (2020), 035011 | DOI | MR
[13] I. V. Prokhorov, I. P. Yarovenko, “Determination of the Attenuation Coefficient for the Nonstationary Radiative Transfer Equation”, Computational Mathematics and Mathematical Physics, 61:12 (2021), 2088–2101 | DOI | MR
[14] L. Florescu, V. A. Markel, J. C. Schotland, “Single-scattering optical tomography: simultaneous reconstruction of scattering and absorption”, Phys. Rev. E., 81 (2010), 016602 | DOI
[15] A. Kleinboehl, J. T. Schofield, W. A. Abdou, P. G. J. Irwin, de R. J. Kok, “A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere”, Journal of Quantitative Spectroscopy and Radiative Transfer, 112:10 (2011), 1568–1580 | DOI