Analysis and computer implementation of the mathematical model of $180^{^\circ}$ domain structures formation in ferroelectrics
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 257-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study is devoted to the theoretical analysis and numerical implementation of the 2D mathematical model of $180^{^\circ}$ ferroelectric domain structures formation within the framework of the Landau – Ginzburg – Devonshire thermodynamic approach supplemented by the Landau – Khalatnikov equation to express the polarization dynamics. The mathematical problem statement is formalized as an initial-boundary value problem for semilinear parabolic partial differential equation. A finite element implementation of the model is performed with the use of COMSOL Multiphysics platform. A series of computational experiments were conducted to visualize various configurations of ferroelectric domain structures.
@article{DVMG_2022_22_2_a22,
     author = {E. M. Veselova},
     title = {Analysis and computer implementation of the mathematical model of $180^{^\circ}$ domain structures formation in ferroelectrics},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {257--262},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a22/}
}
TY  - JOUR
AU  - E. M. Veselova
TI  - Analysis and computer implementation of the mathematical model of $180^{^\circ}$ domain structures formation in ferroelectrics
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 257
EP  - 262
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a22/
LA  - en
ID  - DVMG_2022_22_2_a22
ER  - 
%0 Journal Article
%A E. M. Veselova
%T Analysis and computer implementation of the mathematical model of $180^{^\circ}$ domain structures formation in ferroelectrics
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 257-262
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a22/
%G en
%F DVMG_2022_22_2_a22
E. M. Veselova. Analysis and computer implementation of the mathematical model of $180^{^\circ}$ domain structures formation in ferroelectrics. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 257-262. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a22/

[1] D. Otten, Mathematical models of reaction diffusion systems, their numerical solutions and the freezing method with Comsol Multiphysics, Department of Mathematics Bielefeld University, Bielefeld, Germany, 2010

[2] C. L. Wang, L. Zhang, W. L. Zhong, P. L. Zhang, “Switching characters of asymmetric ferroelectric films”, Physics Letters, 46:1 (1999), 297–300 | DOI

[3] K. M. Rabe, C. Ahn, J. Triscone, Physics of ferroelectrics: a modern perspective, Springer Berlin, Heidelberg, 2007

[4] T. K. Song, “Landau-Khalatnikov simulation for ferroelectric switching in ferroelectric random access memory application”, Journal of the Korean Physical Society, 46:1 (2005), 5–9

[5] M. K. Roy, S. Sarkar, S. Dattagupta, “Evolution of $180^{^\circ}$, $90^{^\circ}$, and vortex domains in ferroelectric films”, Applied Physics Letters, 95 (2009), 192905 | DOI

[6] A. N. Morozovska, E. A. Eliseev, D. Remiens, C. Soyer, “Modelling of pyroelectric response in inhomogeneous ferroelectric-semiconductor films”, Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (2006), 14–21 | DOI

[7] L. Moroz, A. Maslovskaya, “Computer simulation of hysteresis phenomena for ferroelectric switching devices”, International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2020, 2020, 9271496, 6 pp.

[8] A. G. Maslovskaya, L. I. Moroz, A. Y. Chebotarev, A. E. Kovtanyuk, “Theoretical and numerical analysis of the Landau-Khalatnikov model of ferroelectric hysteresis”, Communications in Nonlinear Science and Numerical Simulation, 93 (2021), 105524 | DOI | MR

[9] L. Moroz, E. Veselova, A. Maslovskaya, “Simulation of thickness-dependent polarization switching in ferroelectric thin films using COMSOL Multiphysics Platform”, Smart Innovation, Systems and Technologies, 272 (2022), 49–57 | DOI

[10] R. Temam, Infinite dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, 68, 1988 | DOI | MR

[11] I. V. Kubasov, A. M. Kislyuk, A. V. Turutin, M. D. Malinkovich, Yu. N. Parkhomenko, “Bidomain ferroelectric crystals: properties and application prospects”, News of Higher Educational Institutions. Materials of Electronic Equipment, 23 (2020), 5–56