Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_2_a19, author = {M. A. Sultanov and V. E. Misilov and Y. Nurlanuly}, title = {Efficient {Parareal} algorithm for solving time-fractional diffusion equation}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {245--251}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a19/} }
TY - JOUR AU - M. A. Sultanov AU - V. E. Misilov AU - Y. Nurlanuly TI - Efficient Parareal algorithm for solving time-fractional diffusion equation JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 245 EP - 251 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a19/ LA - en ID - DVMG_2022_22_2_a19 ER -
%0 Journal Article %A M. A. Sultanov %A V. E. Misilov %A Y. Nurlanuly %T Efficient Parareal algorithm for solving time-fractional diffusion equation %J Dalʹnevostočnyj matematičeskij žurnal %D 2022 %P 245-251 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a19/ %G en %F DVMG_2022_22_2_a19
M. A. Sultanov; V. E. Misilov; Y. Nurlanuly. Efficient Parareal algorithm for solving time-fractional diffusion equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 245-251. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a19/
[1] J. T. Machado, A. Galhano, J. J. Trujillo, “Science metrics on fractional calculus development since 1966”, Fract. Calc. Appl. Anal., 16 (2013), 479–500 | DOI | MR
[2] M. A. Sultanov, D. K. Durdiev, A. A. Rahmonov, “Construction of an Explicit Solution of a Time-Fractional Multidimensional Differential Equation”, Mathematics, 9 (2021), 2052 | DOI
[3] R. Metzler, J. H. Jeon, A. G. Cherstvy, E. Barkai, “Anomalous diffusion models and their properties: Non-stationarity, non- ergodicity, and ageing at the centenary of single particle tracking”, Phys. Chem. Chem. Phys., 16 (2014), 24128–24164 | DOI
[4] P. de Luca, A. Galletti, H. Ghehsareh, L. Marcellino, M. Raei, “A GPU-CUDA framework for solving a two-dimensional inverse anomalous diffusion problem”, Parallel Comput. Technol. Trends, 36 (2020), 311
[5] X. Yang, L. Wu, “A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model”, Mathematics, 8:4 (2020), 596 | DOI | MR
[6] M. A. Sultanov, E. N. Akimova, V. E. Misilov, Y. Nurlanuly, “Parallel Direct and Iterative Methods for Solving the Time-Fractional Diffusion Equation on Multicore Processors”, Mathematics, 10:3 (2022), 323 | DOI
[7] J. L. Lions, Y. Maday, G. Turinici, “A “parareal” in time discretization of PDEs”, C.R. Acad. Sci. Paris Ser. I Math., 332 (2001), 661–668 | DOI | MR
[8] Q. Xu, J. S. Hesthaven, F. Chen, “A parareal method for time-fractional differential equations”, J. Comp. Phys., 293 (2015), 173–183 | DOI | MR
[9] Y. Zhang, “A finite difference method for fractional partial differential equation”, Appl. Math. Comput., 215 (2009), 524–529 | MR
[10] A. A. Samarskii, E. S. Nikolaev, Numerical methods for grid equations, v. I, Direct Methods, Birkhauser Basel, Switzerland, 1989, XXXV, 242 pp. | MR
[11] H. Fu, H. Wang, “A preconditioned fast Parareal finite difference method for space-time fractional partial differential equation”, J. Sci. Comput., 78:3 (2018), 1724–1743 | MR