Efficient Parareal algorithm for solving time-fractional diffusion equation
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 245-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to developing efficient parallel algorithms for solving the initial boundary problem for the time-fractional diffusion equation. Traditional approaches to parallelization are based on the space domain decomposition. In contrast, the parareal method is based on the time domain decomposition and an iterative predictor-corrector procedure. The fast solver on a coarse grid is used to construct the initial approximations for subtasks (solved by accurate solvers on finer grids) and for correcting the solutions of subtasks. The subtasks may be solved independently for each subinterval of time. This allows one to implement the efficient parallel algorithms for various high-performance architectures. Currently, this method is widely used for problems for classical differential equations with integer orders. But it is much less commonly used for the fractional equations. In this work, the parareal algorithm for solving the initial boundary problem for the time-fractional diffusion equation is implemented using the OpenMP technology for multicore processors. The numerical experiments are performed to estimate the efficiency of parallel implementation and compare the parareal algorithm with the traditional space domain decomposition.
@article{DVMG_2022_22_2_a19,
     author = {M. A. Sultanov and V. E. Misilov and Y. Nurlanuly},
     title = {Efficient {Parareal} algorithm for solving time-fractional diffusion equation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {245--251},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a19/}
}
TY  - JOUR
AU  - M. A. Sultanov
AU  - V. E. Misilov
AU  - Y. Nurlanuly
TI  - Efficient Parareal algorithm for solving time-fractional diffusion equation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 245
EP  - 251
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a19/
LA  - en
ID  - DVMG_2022_22_2_a19
ER  - 
%0 Journal Article
%A M. A. Sultanov
%A V. E. Misilov
%A Y. Nurlanuly
%T Efficient Parareal algorithm for solving time-fractional diffusion equation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 245-251
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a19/
%G en
%F DVMG_2022_22_2_a19
M. A. Sultanov; V. E. Misilov; Y. Nurlanuly. Efficient Parareal algorithm for solving time-fractional diffusion equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 2, pp. 245-251. http://geodesic.mathdoc.fr/item/DVMG_2022_22_2_a19/

[1] J. T. Machado, A. Galhano, J. J. Trujillo, “Science metrics on fractional calculus development since 1966”, Fract. Calc. Appl. Anal., 16 (2013), 479–500 | DOI | MR

[2] M. A. Sultanov, D. K. Durdiev, A. A. Rahmonov, “Construction of an Explicit Solution of a Time-Fractional Multidimensional Differential Equation”, Mathematics, 9 (2021), 2052 | DOI

[3] R. Metzler, J. H. Jeon, A. G. Cherstvy, E. Barkai, “Anomalous diffusion models and their properties: Non-stationarity, non- ergodicity, and ageing at the centenary of single particle tracking”, Phys. Chem. Chem. Phys., 16 (2014), 24128–24164 | DOI

[4] P. de Luca, A. Galletti, H. Ghehsareh, L. Marcellino, M. Raei, “A GPU-CUDA framework for solving a two-dimensional inverse anomalous diffusion problem”, Parallel Comput. Technol. Trends, 36 (2020), 311

[5] X. Yang, L. Wu, “A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model”, Mathematics, 8:4 (2020), 596 | DOI | MR

[6] M. A. Sultanov, E. N. Akimova, V. E. Misilov, Y. Nurlanuly, “Parallel Direct and Iterative Methods for Solving the Time-Fractional Diffusion Equation on Multicore Processors”, Mathematics, 10:3 (2022), 323 | DOI

[7] J. L. Lions, Y. Maday, G. Turinici, “A “parareal” in time discretization of PDEs”, C.R. Acad. Sci. Paris Ser. I Math., 332 (2001), 661–668 | DOI | MR

[8] Q. Xu, J. S. Hesthaven, F. Chen, “A parareal method for time-fractional differential equations”, J. Comp. Phys., 293 (2015), 173–183 | DOI | MR

[9] Y. Zhang, “A finite difference method for fractional partial differential equation”, Appl. Math. Comput., 215 (2009), 524–529 | MR

[10] A. A. Samarskii, E. S. Nikolaev, Numerical methods for grid equations, v. I, Direct Methods, Birkhauser Basel, Switzerland, 1989, XXXV, 242 pp. | MR

[11] H. Fu, H. Wang, “A preconditioned fast Parareal finite difference method for space-time fractional partial differential equation”, J. Sci. Comput., 78:3 (2018), 1724–1743 | MR