Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_1_a9, author = {A. Yu. Chebotarev}, title = {Initial-boundary value problem for the equations of radiative heat transfer with {Fresnel} conjugation conditions}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {100--106}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a9/} }
TY - JOUR AU - A. Yu. Chebotarev TI - Initial-boundary value problem for the equations of radiative heat transfer with Fresnel conjugation conditions JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 100 EP - 106 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a9/ LA - ru ID - DVMG_2022_22_1_a9 ER -
%0 Journal Article %A A. Yu. Chebotarev %T Initial-boundary value problem for the equations of radiative heat transfer with Fresnel conjugation conditions %J Dalʹnevostočnyj matematičeskij žurnal %D 2022 %P 100-106 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a9/ %G ru %F DVMG_2022_22_1_a9
A. Yu. Chebotarev. Initial-boundary value problem for the equations of radiative heat transfer with Fresnel conjugation conditions. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 100-106. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a9/
[1] Alexander Yu. Chebotarev and Gleb V. Grenkin and Andrey E. Kovtanyuk and Nikolai D. Botkin and Karl-Heinz Hoffmann, “Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions”, Communications in Nonlinear Science and Numerical Simulation, 57 (2018), 290–298 | DOI | MR | Zbl
[2] A. Yu. Chebotarev, “Inhomogeneous Boundary Value Problem for Complex Heat Transfer Equations with Fresnel Matching Conditions”, Differential Equations, 56:12 (2020), 1613–1618 | DOI | MR
[3] A. Y. Chebotarev, A. E. Kovtanyuk, “Quasi-static diffusion model of complex heat transfer with reflection and refraction conditions”, J. Math. Anal. Appl., 507 (2022), 125745 | DOI | MR | Zbl
[4] R. Pinnau, “Analysis of Optimal Boundary Control for Radiative Heat Transfer Modelled by the SP$_1$-System”, Comm. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl
[5] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815 | DOI | MR | Zbl
[6] Comput. Math. Math. Phys., 54:4 (2014), 719–726 | DOI | DOI | MR | Zbl
[7] A. E. Kovtanyuk, A. Yu. Chebotarev, “Statsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Differentsialnye uravneniya, 50:12 (2014), 1590–1597 | Zbl
[8] Andrey E. Kovtanyuk, Alexander Yu. Chebotarev, Nikolai D. Botkin, and Karl-Heinz Hoffmann, “Theoretical analysis of an optimal control problem of conductive convective radiative heat transfer”, J. Math. Anal. Appl., 412 (2014), 520–528 | DOI | MR | Zbl
[9] A. E. Kovtanyuk, A. Y. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Solvability of $P1$ approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247–252 | MR | Zbl
[10] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, and Karl-Heinz Hoffman, “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simulat., 20 (2015), 776–784 | DOI | MR | Zbl
[11] A. Chebotarev, A. Kovtanyuk, G. Grenkin, N. Botkin, and K.-H. Hoffman, “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433:2 (2016), 1243–1260 | DOI | MR | Zbl
[12] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439 (2016), 678–689 | DOI | MR | Zbl
[13] {Alexander Yu.} Chebotarev, {Andrey E.} Kovtanyuk, {Gleb V.} Grenkin, {Nikolai D.} Botkin, and {Karl Heinz} Hoffmann, “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Applied Mathematics and Computation, 289:10 (2016), 371–380 | MR | Zbl
[14] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM Math. Model. Numer. Anal., 51:6 (2017), 2511–2519 | DOI | MR | Zbl
[15] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, N. D. Botkin, K.-H. Hoffmann, “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange”, J. Math. Anal. Appl., 460:2 (2018), 737–744 | DOI | MR | Zbl
[16] Alexander Yu. Chebotarev and Andrey E. Kovtanyuk and Nikolai D. Botkin, “Problem of radiation heat exchange with boundary conditions of the Cauchy type”, Communications in Nonlinear Science and Numerical Simulation, 75 (2019), 262–269 | DOI | MR | Zbl
[17] A. Yu. Chebotarev, R. Pinnau, “An inverse problem for a quasi-static approximate model of radiative heat transfer”, J. Math. Anal. Appl., 472:1 (2019), 737–744 | DOI | MR
[18] G. V. Grenkin, A. Yu. Chebotarev, “Obratnaya zadacha dlya uravnenii slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 59:8 (2019), 1420–1430 | DOI | MR | Zbl
[19] A. G. Kolobov, T. V. Pak, A. Yu. Chebotarev, “Statsionarnaya zadacha radiatsionnogo teploobmena s granichnymi usloviyami tipa Koshi”, Zh. vychisl. matem. i matem. fiz., 59:7 (2019), 1258–1263 | DOI | Zbl
[20] A. Yu. Chebotarev, “Obratnaya zadacha dlya uravnenii slozhnogo teploobmena s frenelevskimi usloviyami sopryazheniya”, Zh. vychisl. matem. i matem. fiz., 61:2 (2021), 303–311 | Zbl
[21] A. A. Amosov, “Unique Solvability of a Nonstationary Problem of Radiative - Conductive Heat Exchange in a System of Semitransparent Bodies”, Russian J. of Math. Phys., 23 (2016), 309-334 | DOI | MR | Zbl
[22] A. A. Amosov, “Unique Solvability of Stationary Radiative-Conductive Heat Transfer Problem in a System of Semitransparent Bodies”, Journal of Mathematical Sciences, 224:5 (2017), 618–646 | DOI | MR | Zbl
[23] A. A. Amosov, “Nonstationary problem of complex heat transfer in a system of semitransparent bodies with boundary-value conditions of diffuse reflection and refraction of radiation”, Journal of Mathematical Sciences, 233:6 (201), 777–806 | DOI | MR | Zbl
[24] A. A. Amosov, N. E. Krymov, “On a Nonstandard Boundary Value Problem Arising in Homogenization of Complex Heat Transfer Problems”, Journal of Mathematical Sciences, 244:3 (2020), 357–377 | DOI | MR | Zbl