Polynomial Somos sequences II
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 91-99

Voir la notice de l'article provenant de la source Math-Net.Ru

It was proved in [1] that for $k=4,5,6,7$ the elements of the Somos-$k$ sequence defined by the recurrence $$S_k(n+k)S_k(n)=\sum_{1\leqslant i\leqslant k/2}\alpha_i x_0\dots x_{k-1}S_k(n+k-i)S_k(n+i)$$ and initial values $S_k(j)=x_j$ ($j=0,\dots,k-1$) are polynomials in the variables $x_0,\dots,x_{k-1}$. The unit powers of the variables $x_j$ in the factors \linebreak $\alpha_i x_0\dots x_{k-1}$ can be reduced. In this paper, we find the smallest values of these powers, at which the polynomiality of the above sequence is preserved.
@article{DVMG_2022_22_1_a8,
     author = {M. A. Romanov},
     title = {Polynomial {Somos} sequences {II}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {91--99},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a8/}
}
TY  - JOUR
AU  - M. A. Romanov
TI  - Polynomial Somos sequences II
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 91
EP  - 99
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a8/
LA  - ru
ID  - DVMG_2022_22_1_a8
ER  - 
%0 Journal Article
%A M. A. Romanov
%T Polynomial Somos sequences II
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 91-99
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a8/
%G ru
%F DVMG_2022_22_1_a8
M. A. Romanov. Polynomial Somos sequences II. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 91-99. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a8/