Global three-dimensional solvability the axisimmetric Stefan problem for quasilinear equation
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 61-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove results related to the study of the solvability of a problem with an unknown boundary by compactness methods. Relative compactness theorems are used, which were obtained in previous publications, adapted to the study of problems like the Stefan problem with an unknown boundary. In previous papers, for the equation considered here, we studied the initial-boundary problem in a non-cylindrical domain with a given curvilinear boundary of class $W^1_2$ and the problem for which, under the condition on the unknown boundary, the coefficient latent specific heat of fusion (in contrast to the Stefan problem, considered given here) was an unknown quantity. Therefore, in some places calculations will be omitted that almost completely coincide with those set out in the works listed below. The proposed technique can be applied in more general situations: more phase transition boundaries, or more complex nonlinearities. As a result, global over time, the regular solvability of a single-phase axisymmetric Stefan problem for a quasilinear three-dimensional parabolic equation with unknown boundary from the class $W^1_4$, is proved.
@article{DVMG_2022_22_1_a5,
     author = {A. G. Podgaev and V. Ya. Prudnikov and T. D. Kulesh},
     title = {Global three-dimensional solvability the axisimmetric {Stefan} problem for quasilinear equation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {61--75},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a5/}
}
TY  - JOUR
AU  - A. G. Podgaev
AU  - V. Ya. Prudnikov
AU  - T. D. Kulesh
TI  - Global three-dimensional solvability the axisimmetric Stefan problem for quasilinear equation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 61
EP  - 75
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a5/
LA  - ru
ID  - DVMG_2022_22_1_a5
ER  - 
%0 Journal Article
%A A. G. Podgaev
%A V. Ya. Prudnikov
%A T. D. Kulesh
%T Global three-dimensional solvability the axisimmetric Stefan problem for quasilinear equation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 61-75
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a5/
%G ru
%F DVMG_2022_22_1_a5
A. G. Podgaev; V. Ya. Prudnikov; T. D. Kulesh. Global three-dimensional solvability the axisimmetric Stefan problem for quasilinear equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 61-75. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a5/

[1] A. M. Borodin, “Zadacha Stefana”, Ukrainskii matematicheskii vestnik, 8 (2011), 17–54 | Zbl

[2] A. M. Meirmanov, O. A. Galtseva, V. E. Seldemirov, “O suschestvovanii obobschennogo resheniya v tselom po vremeni odnoi zadachi so svobodnoi granitsei”, Matem. zametki, 107:2 (2020), 229–240 | MR | Zbl

[3] J. Bollati, A. D. Tarzia, “One-phase Stefan problem with a latent heat depending on the position of the free boundary and its rate of change”, Electronic Journal of Differential Equations, 2018:10 (2018), 1–12 | MR

[4] V. N. Belykh, “Korrektnost odnoi nestatsionarnoi osesimmetrichnoi zadachi gidrodinamiki so svobodnoi poverkhnostyu”, Sibirskii matematicheskii zhurnal, 58:4 (2017), 728–744 | MR | Zbl

[5] Zh. O. Takhirov, R. N. Turaev, “Nelokalnaya zadacha Stefana dlya kvazilineinogo parabolicheskogo uravneniya”, Vestn. Sam. gos.tekhn. un-ta. Ser. Fiz.-mat. nauki, 28:3 (2012), 8–16 | Zbl

[6] J. Bollati,D. A. Tarzia, “Explicit solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face”, Communications in Applied Analysis, See http://arxiv.org/abs/1610.09338 2017 | MR

[7] F. Li, D. Lu, “Rasprostranenie reshenii dlya uravneniya diffuzii reaktsii so svobodnymi granitsami v periodicheskoi srede”, Elektron. J. Differentsialnye uravneniya, 2018, no. 185, 1–12

[8] D. A. Tarzia, “A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan and related problems”, MAT-Serie A, 2000, no. 2, 1–297 | DOI | MR

[9] A. G. Podgaev, “Razreshimost osesimmetrichnoi zadachi dlya nelineinogo parabolicheskogo uravneniya v oblastyakh s netsilindricheskoi ili neizvestnoi granitsei. I”, Chelyab. fiz.-matem. zhurnal, 5:1 (2020), 44–55 | MR | Zbl

[10] A. G. Podgaev, “O teoremakh kompaktnosti, svyazannykh s zadachami s neizvestnoi granitsei”, Matematicheskie zametki SVFU, 28:4 (2021), 71–89

[11] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR

[12] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[13] A. M. Meirmanov, The Stefan Problem, Walter de Gruyter, Berlin, 1992 | MR | Zbl