Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_1_a5, author = {A. G. Podgaev and V. Ya. Prudnikov and T. D. Kulesh}, title = {Global three-dimensional solvability the axisimmetric {Stefan} problem for quasilinear equation}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {61--75}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a5/} }
TY - JOUR AU - A. G. Podgaev AU - V. Ya. Prudnikov AU - T. D. Kulesh TI - Global three-dimensional solvability the axisimmetric Stefan problem for quasilinear equation JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 61 EP - 75 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a5/ LA - ru ID - DVMG_2022_22_1_a5 ER -
%0 Journal Article %A A. G. Podgaev %A V. Ya. Prudnikov %A T. D. Kulesh %T Global three-dimensional solvability the axisimmetric Stefan problem for quasilinear equation %J Dalʹnevostočnyj matematičeskij žurnal %D 2022 %P 61-75 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a5/ %G ru %F DVMG_2022_22_1_a5
A. G. Podgaev; V. Ya. Prudnikov; T. D. Kulesh. Global three-dimensional solvability the axisimmetric Stefan problem for quasilinear equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 61-75. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a5/
[1] A. M. Borodin, “Zadacha Stefana”, Ukrainskii matematicheskii vestnik, 8 (2011), 17–54 | Zbl
[2] A. M. Meirmanov, O. A. Galtseva, V. E. Seldemirov, “O suschestvovanii obobschennogo resheniya v tselom po vremeni odnoi zadachi so svobodnoi granitsei”, Matem. zametki, 107:2 (2020), 229–240 | MR | Zbl
[3] J. Bollati, A. D. Tarzia, “One-phase Stefan problem with a latent heat depending on the position of the free boundary and its rate of change”, Electronic Journal of Differential Equations, 2018:10 (2018), 1–12 | MR
[4] V. N. Belykh, “Korrektnost odnoi nestatsionarnoi osesimmetrichnoi zadachi gidrodinamiki so svobodnoi poverkhnostyu”, Sibirskii matematicheskii zhurnal, 58:4 (2017), 728–744 | MR | Zbl
[5] Zh. O. Takhirov, R. N. Turaev, “Nelokalnaya zadacha Stefana dlya kvazilineinogo parabolicheskogo uravneniya”, Vestn. Sam. gos.tekhn. un-ta. Ser. Fiz.-mat. nauki, 28:3 (2012), 8–16 | Zbl
[6] J. Bollati,D. A. Tarzia, “Explicit solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face”, Communications in Applied Analysis, See http://arxiv.org/abs/1610.09338 2017 | MR
[7] F. Li, D. Lu, “Rasprostranenie reshenii dlya uravneniya diffuzii reaktsii so svobodnymi granitsami v periodicheskoi srede”, Elektron. J. Differentsialnye uravneniya, 2018, no. 185, 1–12
[8] D. A. Tarzia, “A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan and related problems”, MAT-Serie A, 2000, no. 2, 1–297 | DOI | MR
[9] A. G. Podgaev, “Razreshimost osesimmetrichnoi zadachi dlya nelineinogo parabolicheskogo uravneniya v oblastyakh s netsilindricheskoi ili neizvestnoi granitsei. I”, Chelyab. fiz.-matem. zhurnal, 5:1 (2020), 44–55 | MR | Zbl
[10] A. G. Podgaev, “O teoremakh kompaktnosti, svyazannykh s zadachami s neizvestnoi granitsei”, Matematicheskie zametki SVFU, 28:4 (2021), 71–89
[11] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR
[12] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[13] A. M. Meirmanov, The Stefan Problem, Walter de Gruyter, Berlin, 1992 | MR | Zbl