On the condensers with variable plates, potential levels and domain of definition
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 55-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic formula is obtained for the capacity of a generalized condenser when parts of its plates contract to prescribed points. We consider condenser with variable potential levels and a set of definition that tends to a predetermined domain.
@article{DVMG_2022_22_1_a4,
     author = {V. N. Dubinin and V. Yu. Kim},
     title = {On the condensers with variable plates, potential levels and domain of definition},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {55--60},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - V. Yu. Kim
TI  - On the condensers with variable plates, potential levels and domain of definition
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 55
EP  - 60
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a4/
LA  - ru
ID  - DVMG_2022_22_1_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A V. Yu. Kim
%T On the condensers with variable plates, potential levels and domain of definition
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 55-60
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a4/
%G ru
%F DVMG_2022_22_1_a4
V. N. Dubinin; V. Yu. Kim. On the condensers with variable plates, potential levels and domain of definition. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 55-60. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a4/

[1] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatlit, M., 1962 | MR

[2] L. V. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta math., 83:1/2 (1950), 101–129 | DOI | MR | Zbl

[3] V. K. Kheiman, Mnogolistnye funktsii, Izd-vo inostr. lit., M., 1960

[4] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, Izd-vo inostr. lit., M., 1962

[5] V. G. Kuzmina, “Metody geometricheskoi teorii funktsii. II”, Algebra i analiz, 9:5 (1997), 1–50 | Zbl

[6] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | Zbl

[7] V. N. Dubinin, “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Zap. nauchn. sem. POMI, 237, 1997, 56–73 | Zbl

[8] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhäuser/Springer, Basel, 2014 | MR | Zbl

[9] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Math. Nachr., 283:11 (2010), 1589–1602 | DOI | MR | Zbl

[10] V. N. Dubinin, “Asimptotika emkosti kondensatora s peremennymi urovnyami potentsiala”, Sib. matem. zhurn., 61:4 (2020), 796–802 | MR | Zbl

[11] M. Schiffer, “Some recent developments in the theory of conformal mapping”, Appendix: R. Courant, Dirichlet’s principle, conformal mapping, and minimal surfaces, Interscience Publishers, Inc., New York, 1950, 249–323 | MR