Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_1_a4, author = {V. N. Dubinin and V. Yu. Kim}, title = {On the condensers with variable plates, potential levels and domain of definition}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {55--60}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a4/} }
TY - JOUR AU - V. N. Dubinin AU - V. Yu. Kim TI - On the condensers with variable plates, potential levels and domain of definition JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 55 EP - 60 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a4/ LA - ru ID - DVMG_2022_22_1_a4 ER -
V. N. Dubinin; V. Yu. Kim. On the condensers with variable plates, potential levels and domain of definition. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 55-60. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a4/
[1] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatlit, M., 1962 | MR
[2] L. V. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta math., 83:1/2 (1950), 101–129 | DOI | MR | Zbl
[3] V. K. Kheiman, Mnogolistnye funktsii, Izd-vo inostr. lit., M., 1960
[4] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, Izd-vo inostr. lit., M., 1962
[5] V. G. Kuzmina, “Metody geometricheskoi teorii funktsii. II”, Algebra i analiz, 9:5 (1997), 1–50 | Zbl
[6] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | Zbl
[7] V. N. Dubinin, “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Zap. nauchn. sem. POMI, 237, 1997, 56–73 | Zbl
[8] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhäuser/Springer, Basel, 2014 | MR | Zbl
[9] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Math. Nachr., 283:11 (2010), 1589–1602 | DOI | MR | Zbl
[10] V. N. Dubinin, “Asimptotika emkosti kondensatora s peremennymi urovnyami potentsiala”, Sib. matem. zhurn., 61:4 (2020), 796–802 | MR | Zbl
[11] M. Schiffer, “Some recent developments in the theory of conformal mapping”, Appendix: R. Courant, Dirichlet’s principle, conformal mapping, and minimal surfaces, Interscience Publishers, Inc., New York, 1950, 249–323 | MR