Jackson\,--\,Stechkin Inequality and Values of Widths of Some Classes
Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 125-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sharp values of extremal characteristic of special form for classes $L_{2}^{(r)}$, $(r\in\mathbb{Z}_{+})$ containing not only averaged module of continuity but also the averaged with weight $u(t-u)/t$, $0\le u\le t$ of given modulus continuity is calculated. The obtained result is the spreading of well-known S.B. Vakarchuk theorem about averaged module of continuity. For the given characteristic of smoothness, is given an application for the solution of one extremal problem and the values of $n$-widths for some classes of functions in $L_2$ is calculated.
@article{DVMG_2022_22_1_a12,
     author = {M. Sh. Shabozov and K. K. Palavonov},
     title = {Jackson\,--\,Stechkin {Inequality} and {Values} of {Widths} of {Some} {Classes}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {125--137},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a12/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - K. K. Palavonov
TI  - Jackson\,--\,Stechkin Inequality and Values of Widths of Some Classes
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2022
SP  - 125
EP  - 137
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a12/
LA  - ru
ID  - DVMG_2022_22_1_a12
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A K. K. Palavonov
%T Jackson\,--\,Stechkin Inequality and Values of Widths of Some Classes
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2022
%P 125-137
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a12/
%G ru
%F DVMG_2022_22_1_a12
M. Sh. Shabozov; K. K. Palavonov. Jackson\,--\,Stechkin Inequality and Values of Widths of Some Classes. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 125-137. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a12/

[1] Z. Ditzian, V. Totik, Moduli of smoothness, Springer set. Comput. Math., Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl

[2] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_{p}$, ($0

1$)”, Matem. sb., 185:8 (1994), 81–102 | Zbl

[3] S. B. Vakarchuk, A. N. Schitov, “Nailuchshie polinomialnye priblizheniya v $L_{2}$ i poperechniki nekotorykh klassov funktsii”, Ukr. mat. zhurn., 56:11 (2004), 1458–1466 | MR | Zbl

[4] S. N. Vasilev, “Tochnoe neravenstvo Dzheksona–Stechkina v $L_{2}$ s modulem nepreryvnosti, porozhdennymi proizvolnym konechno-raznostnym operatorom s postoyannymi koeffitsientami”, Dokl. RAN., 385:1 (2002), 11–14 | MR

[5] A. I. Kazko, A. V. Rozhdestvenskii, “O neravenstve Dzheksona s obobschennym modulem nepreryvnosti”, Mat. zametki, 73:5 (2003), 783–788 | MR

[6] A. V. Ivanov, V. I. Ivanov, “Optimalnye argumenty v neravenstve Dzheksona v prostranstve $L_{2}(\mathbb{R}^{d})$ so stepennym vesom”, Mat. zametki, 94:3 (2013), 338–348 | Zbl

[7] M. K. Potapov, “O svoistvakh i o primenenii v teorii priblizhenii odnogo svoistva operatorov obobschennogo sdviga”, Mat. zametki, 69:3 (2001), 412–426 | MR | Zbl

[8] N. P. Pustovoitov, “Otsenka nailuchshikh priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami cherez usrednennye raznosti i mnogomernaya teorema Dzheksona”, Matem. sb., 188:10 (1997), 95–108 | MR | Zbl

[9] V. A. Abilov, F. V. Abilova, “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_{2}(2\pi)$”, Mat. zametki, 76:6 (2004), 803–811 | Zbl

[10] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_2$”, Mat. zametki, 92:4 (2012), 497–514 | Zbl

[11] M. Sh. Shabozov, K. Tukhliev, “Nailuchshie polinomialnye priblizheniya i poperechniki nekotorykh funktsionalnykh klassov v $L_{2}$”, Mat. zametki, 94:6 (2013), 908–917 | Zbl

[12] M. Sh. Shabozov, G. A. Yusupov, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov nekotorykh klassov funktsii v $L_{2}$”, Sibir. matem. zhurnal., 52:6 (2011), 1414–1427 | MR | Zbl

[13] K. Tukhliev, “Nailuchshie priblizheniya i poperechniki nekotorykh klassov svërtok v $L_{2}$”, Trudy IM i M UrO RAN, 22:4 (2016), 284–294 | MR

[14] A. Pinkus, $n$-Widths in Approximation Theory., Springer-Verlag, Berlin. Heidelberg. New York. Tokyo, 1985, 252 pp. | MR | Zbl

[15] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, MGU, M., 1976