Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2022_22_1_a12, author = {M. Sh. Shabozov and K. K. Palavonov}, title = {Jackson\,--\,Stechkin {Inequality} and {Values} of {Widths} of {Some} {Classes}}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {125--137}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a12/} }
TY - JOUR AU - M. Sh. Shabozov AU - K. K. Palavonov TI - Jackson\,--\,Stechkin Inequality and Values of Widths of Some Classes JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2022 SP - 125 EP - 137 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a12/ LA - ru ID - DVMG_2022_22_1_a12 ER -
M. Sh. Shabozov; K. K. Palavonov. Jackson\,--\,Stechkin Inequality and Values of Widths of Some Classes. Dalʹnevostočnyj matematičeskij žurnal, Tome 22 (2022) no. 1, pp. 125-137. http://geodesic.mathdoc.fr/item/DVMG_2022_22_1_a12/
[1] Z. Ditzian, V. Totik, Moduli of smoothness, Springer set. Comput. Math., Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl
[2] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_{p}$, ($0
1$)”, Matem. sb., 185:8 (1994), 81–102 | Zbl[3] S. B. Vakarchuk, A. N. Schitov, “Nailuchshie polinomialnye priblizheniya v $L_{2}$ i poperechniki nekotorykh klassov funktsii”, Ukr. mat. zhurn., 56:11 (2004), 1458–1466 | MR | Zbl
[4] S. N. Vasilev, “Tochnoe neravenstvo Dzheksona–Stechkina v $L_{2}$ s modulem nepreryvnosti, porozhdennymi proizvolnym konechno-raznostnym operatorom s postoyannymi koeffitsientami”, Dokl. RAN., 385:1 (2002), 11–14 | MR
[5] A. I. Kazko, A. V. Rozhdestvenskii, “O neravenstve Dzheksona s obobschennym modulem nepreryvnosti”, Mat. zametki, 73:5 (2003), 783–788 | MR
[6] A. V. Ivanov, V. I. Ivanov, “Optimalnye argumenty v neravenstve Dzheksona v prostranstve $L_{2}(\mathbb{R}^{d})$ so stepennym vesom”, Mat. zametki, 94:3 (2013), 338–348 | Zbl
[7] M. K. Potapov, “O svoistvakh i o primenenii v teorii priblizhenii odnogo svoistva operatorov obobschennogo sdviga”, Mat. zametki, 69:3 (2001), 412–426 | MR | Zbl
[8] N. P. Pustovoitov, “Otsenka nailuchshikh priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami cherez usrednennye raznosti i mnogomernaya teorema Dzheksona”, Matem. sb., 188:10 (1997), 95–108 | MR | Zbl
[9] V. A. Abilov, F. V. Abilova, “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_{2}(2\pi)$”, Mat. zametki, 76:6 (2004), 803–811 | Zbl
[10] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_2$”, Mat. zametki, 92:4 (2012), 497–514 | Zbl
[11] M. Sh. Shabozov, K. Tukhliev, “Nailuchshie polinomialnye priblizheniya i poperechniki nekotorykh funktsionalnykh klassov v $L_{2}$”, Mat. zametki, 94:6 (2013), 908–917 | Zbl
[12] M. Sh. Shabozov, G. A. Yusupov, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov nekotorykh klassov funktsii v $L_{2}$”, Sibir. matem. zhurnal., 52:6 (2011), 1414–1427 | MR | Zbl
[13] K. Tukhliev, “Nailuchshie priblizheniya i poperechniki nekotorykh klassov svërtok v $L_{2}$”, Trudy IM i M UrO RAN, 22:4 (2016), 284–294 | MR
[14] A. Pinkus, $n$-Widths in Approximation Theory., Springer-Verlag, Berlin. Heidelberg. New York. Tokyo, 1985, 252 pp. | MR | Zbl
[15] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, MGU, M., 1976