Periodic ultradiscrete plane transformation with a period of 12
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 231-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

V.A. Bykovskii constructed a new periodic ultradiscrete plane transformation with a period of 12. In his work only the idea of proving this periodicity was proposed. We provide a complete and detailed proof of this statement.
@article{DVMG_2021_21_2_a8,
     author = {M. D. Monina},
     title = {Periodic ultradiscrete plane transformation with a period of 12},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {231--233},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a8/}
}
TY  - JOUR
AU  - M. D. Monina
TI  - Periodic ultradiscrete plane transformation with a period of 12
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 231
EP  - 233
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a8/
LA  - ru
ID  - DVMG_2021_21_2_a8
ER  - 
%0 Journal Article
%A M. D. Monina
%T Periodic ultradiscrete plane transformation with a period of 12
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 231-233
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a8/
%G ru
%F DVMG_2021_21_2_a8
M. D. Monina. Periodic ultradiscrete plane transformation with a period of 12. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 231-233. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a8/

[1] V. A. Bykovskii, “Periodicheskie ultradispersnye preobrazovaniya ploskosti”, Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniya, 500 (2021), 53–55 | DOI

[2] A. Nobe, “Ultradiscrete QRT maps and tropical elliptic curves”, J. Journal of Physics A: Mathematical and Theoretical, 41:12 (2008), 12 pp. | MR

[3] D. Takahashi, J. Satsuma, “A Soliton Cellular Automaton”, Journal of the Physical Society of Japan, 59:10 (1990), 3514–3519 | DOI | MR

[4] J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro, M. Torii, “Toda-type cellular automaton and its N-soliton solution”, Physics Letters A, 225:4–6 (1997), 287–295 | DOI | MR | Zbl

[5] Chris Ormerod, An ultradiscrete QRT mapping from tropical elliptic curves, 2006, arXiv: math-ph/0609060v1