Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2021_21_2_a8, author = {M. D. Monina}, title = {Periodic ultradiscrete plane transformation with a period of 12}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {231--233}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a8/} }
M. D. Monina. Periodic ultradiscrete plane transformation with a period of 12. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 231-233. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a8/
[1] V. A. Bykovskii, “Periodicheskie ultradispersnye preobrazovaniya ploskosti”, Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniya, 500 (2021), 53–55 | DOI
[2] A. Nobe, “Ultradiscrete QRT maps and tropical elliptic curves”, J. Journal of Physics A: Mathematical and Theoretical, 41:12 (2008), 12 pp. | MR
[3] D. Takahashi, J. Satsuma, “A Soliton Cellular Automaton”, Journal of the Physical Society of Japan, 59:10 (1990), 3514–3519 | DOI | MR
[4] J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro, M. Torii, “Toda-type cellular automaton and its N-soliton solution”, Physics Letters A, 225:4–6 (1997), 287–295 | DOI | MR | Zbl
[5] Chris Ormerod, An ultradiscrete QRT mapping from tropical elliptic curves, 2006, arXiv: math-ph/0609060v1