Approximate solution of the Signorini problem by the finite element method in three-dimensional space
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 203-214
Cet article a éte moissonné depuis la source Math-Net.Ru
The finite element method is usually used for two-dimensional space. The paper investigates the finite element method for solving the Signorini problem in three-dimensional space.
@article{DVMG_2021_21_2_a6,
author = {A. Y. Zolotukhin},
title = {Approximate solution of the {Signorini} problem by the finite element method in three-dimensional space},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {203--214},
year = {2021},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a6/}
}
TY - JOUR AU - A. Y. Zolotukhin TI - Approximate solution of the Signorini problem by the finite element method in three-dimensional space JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2021 SP - 203 EP - 214 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a6/ LA - ru ID - DVMG_2021_21_2_a6 ER -
A. Y. Zolotukhin. Approximate solution of the Signorini problem by the finite element method in three-dimensional space. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 203-214. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a6/
[1] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980
[2] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Nauka, M., 1989
[3] R. Glovinski, Zh.-L. Lions, H. Tremoler, Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979
[4] G. I. Marchuk, Yu. M. Agoshkov, Vvedenie v proektsionno-setochnye metody, Nauka, M., 1975
[5] M. Minu, Matematicheskoe programmirovanie, Nauka, M., 1990
[6] S. G. Mikhlin, Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shkola, M., 1977