Comparative analysis of the error of the single scattering approximation when solving one inverse problem in two-dimensional and three-dimensional cases
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 151-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem for the nonstationary radiative transfer equation is considered, which consists in finding the scattering coefficient for a given time-angular distribution of the solution to the equation at a certain point. To solve this problem, the single scattering approximation in the pulsed sounding mode is used. A comparative analysis of the error in solving the inverse problem in the single scattering approximation for two-dimensional and three-dimensional models describing the process of high-frequency acoustic sounding in a fluctuating ocean is carried out. It is shown that in the two-dimensional case the error of the approximate solution significantly exceeds the error in the three-dimensional model.
@article{DVMG_2021_21_2_a2,
     author = {P. A. Vornovskikh and I. V. Prokhorov},
     title = {Comparative analysis of the error  of the single scattering approximation when solving one inverse problem in two-dimensional and three-dimensional cases},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {151--165},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a2/}
}
TY  - JOUR
AU  - P. A. Vornovskikh
AU  - I. V. Prokhorov
TI  - Comparative analysis of the error  of the single scattering approximation when solving one inverse problem in two-dimensional and three-dimensional cases
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 151
EP  - 165
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a2/
LA  - ru
ID  - DVMG_2021_21_2_a2
ER  - 
%0 Journal Article
%A P. A. Vornovskikh
%A I. V. Prokhorov
%T Comparative analysis of the error  of the single scattering approximation when solving one inverse problem in two-dimensional and three-dimensional cases
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 151-165
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a2/
%G ru
%F DVMG_2021_21_2_a2
P. A. Vornovskikh; I. V. Prokhorov. Comparative analysis of the error  of the single scattering approximation when solving one inverse problem in two-dimensional and three-dimensional cases. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 2, pp. 151-165. http://geodesic.mathdoc.fr/item/DVMG_2021_21_2_a2/

[1] P. A. Vornovskikh, A. Kim, I. V. Prokhorov, “Primenimost priblizheniya odnokratnogo rasseyaniya pri impulsnom zondirovanii neodnorodnoi sredy”, Kompyuternye issledovaniya i modelirovanie, 12:5 (2020), 1063–1079

[2] A. Isimaru, Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, Mir, M., 1981

[3] V. I. Mendus, G. A. Postnov, “Ob uglovom raspredelenii vysokochastotnykh dinamicheskikh shumov okeana”, Akusticheskii zhurnal, 39:6 (1993), 1107–1116

[4] I. B. Andreeva, A. V. Belousov, “O dopustimosti ispolzovaniya priblizheniya odnokratnogo rasseyaniya akusticheskikh voln v zadachakh o skopleniyakh gidrobiontov”, Akusticheskii zhurnal, 42:4 (1996), 560–562

[5] G. Bal, “Kinetics of scalar wave fields in random media”, Wave Motion, 43 (2005), 132–157 | DOI | MR | Zbl

[6] G. Bal, “Inverse transport theory and applications”, Inverse Problems, 25:5 (2009), 025019

[7] I. V. Prokhorov, V. V. Zolotarev, I. B. Agafonov, “Zadacha akusticheskogo zondirovaniya vo fluktuiruyuschem okeane”, Dalnevostochnyi matematicheskii zhurnal, 11:1 (2011), 76–87 | MR | Zbl

[8] I. V. Prokhorov, A. A. Suschenko, “Issledovanie zadachi akusticheskogo zondirovaniya morskogo dna metodami teorii perenosa izlucheniya”, Akusticheskii zhurnal, 61:3 (2015), 400–408

[9] D. S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[10] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, Poorly visible media in X-ray tomography, Inverse and Ill-Posed Problems Series, 38, VSP, Boston–Utrecht, 2002

[11] A. B. Prilepko, A. L. Ivankov, “Obratnye zadachi opredeleniya koeffitsienta, indikatrisy rasseyaniya i pravoi chasti nestatsionarnogo mnogoskorostnogo uravneniya perenosa”, Differentsialnye uravneniya, 21:5 (1985), 870–885 | MR | Zbl

[12] V. G. Romanov, “Otsenka ustoichivosti v zadache ob opredelenii koeffitsienta oslableniya i indikatrisy rasseyaniya dlya uravneniya perenosa”, Sib. matem. zhurn., 37:2 (1996), 361–377 | MR | Zbl

[13] S. Acosta, “Time reversal for radiative transport with applications to inverse and control problems”, Inverse Problems, 29 (2013), 085014 | DOI | MR | Zbl

[14] C. Wang, T. Zhou, “A hybrid reconstruction approach for absorption coefficient by fluorescence photoacoustic tomography”, Inverse Problems, 35 (2018), 025005 | DOI

[15] M. Bellassoued, Y. Boughanja, “An inverse problem for the linear Boltzmann equation with a time-dependent coefficient”, Inverse Problems, 35 (2019), 085003 | DOI | MR | Zbl

[16] W. Dahmen, F. Gruber, O. Mula, “An adaptive nested source term iteration for radiative transfer equations”, Math. Comp, 89 (2020), 1605–1646 | DOI | MR | Zbl

[17] Q. Li, W. Sun, “Applications of kinetic tools to inverse transport problems”, Inverse Problems, 36 (2020), 035011 | DOI | MR | Zbl

[18] L. Florescu, V. A. Markel, J. C. Schotland, “Single-scattering optical tomography: simultaneous reconstruction of scattering and absorption”, Phys. Rev. E., 81 (2010), 016602 | DOI

[19] A. Kleinboehl, J. T. Schofield, W. A. Abdou, P. G. J. Irwin, de R. J. Kok, “A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere”, Journal of Quantitative Spectroscopy and Radiative Transfer, 112:10 (2011), 1568–1580 | DOI

[20] S. Moon, Y. Hristova B. Kwon , “Single scattering tomography with curved detectors”, Journal Biomedical Physics and Engineering Express, 4 (2018), 045040 | DOI

[21] I. V. Prokhorov, A. A. Suschenko, “Zadacha Koshi dlya uravneniya perenosa izlucheniya v neogranichennoi srede”, Dalnevost. matem. zhurn., 18:1 (2018), 101–111 | MR | Zbl

[22] G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976

[23] G. A. Mikhailov, I. N. Medvedev, Optimizatsiya vesovykh algoritmov statisticheskogo modelirovaniya, Omega Print, Novosibirsk, 2011

[24] S. M. Prigarin, “Statisticheskoe modelirovanie effektov, svyazannykh s mnogokratnym rasseyaniem impulsov nazemnykh i kosmicheskikh lidarov v oblachnoi atmosfere”, Optika atmosfery i okeana, 29:9 (2016), 747–751

[25] A. Kim, I. V. Prokhorov, “Teoreticheskii i chislennyi analiz nachalno-kraevoi zadachi dlya uravneniya perenosa izlucheniya s frenelevskimi usloviyami sopryazheniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 58:5 (2018), 762–777 | Zbl