On the value of the widths of some classes of functions from $L_{2}$
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 61-70

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find sharp inequalities of Jackson-Stechkin type between the best approximations of periodic differentiable functions by trigonometric polynomials and generalized moduli of continuity of $m$-th order in the space $L_{2}.$ The exact values of various $n$-widths of classes of functions from $L_{2}$ defined by the generalized modus of continuity of the $r$-th derivative of the function f are calculated.
@article{DVMG_2021_21_1_a5,
     author = {M. R. Langarshoev},
     title = {On the value of the widths of some classes of functions from $L_{2}$},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {61--70},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a5/}
}
TY  - JOUR
AU  - M. R. Langarshoev
TI  - On the value of the widths of some classes of functions from $L_{2}$
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 61
EP  - 70
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a5/
LA  - ru
ID  - DVMG_2021_21_1_a5
ER  - 
%0 Journal Article
%A M. R. Langarshoev
%T On the value of the widths of some classes of functions from $L_{2}$
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 61-70
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a5/
%G ru
%F DVMG_2021_21_1_a5
M. R. Langarshoev. On the value of the widths of some classes of functions from $L_{2}$. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 61-70. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a5/