On the value of the widths of some classes of functions from $L_{2}$
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 61-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find sharp inequalities of Jackson-Stechkin type between the best approximations of periodic differentiable functions by trigonometric polynomials and generalized moduli of continuity of $m$-th order in the space $L_{2}.$ The exact values of various $n$-widths of classes of functions from $L_{2}$ defined by the generalized modus of continuity of the $r$-th derivative of the function f are calculated.
@article{DVMG_2021_21_1_a5,
     author = {M. R. Langarshoev},
     title = {On the value of the widths of some classes of functions from $L_{2}$},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {61--70},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a5/}
}
TY  - JOUR
AU  - M. R. Langarshoev
TI  - On the value of the widths of some classes of functions from $L_{2}$
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 61
EP  - 70
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a5/
LA  - ru
ID  - DVMG_2021_21_1_a5
ER  - 
%0 Journal Article
%A M. R. Langarshoev
%T On the value of the widths of some classes of functions from $L_{2}$
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 61-70
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a5/
%G ru
%F DVMG_2021_21_1_a5
M. R. Langarshoev. On the value of the widths of some classes of functions from $L_{2}$. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 61-70. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a5/

[1] E. A. Storozhenko, V. G. Krotov, P. Osvald, “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L_{p}, 0

1$”, Matem. sbornik, 98:140 (1975), 395–415 | Zbl

[2] K. V. Runovskii, “Pryamaya teorema o priblizhenii “uglom” v prostranstve $L_{p},\, 0

1$”, Matem. zametki, 52:5 (1992), 93–96 | MR

[3] S. B. Vakarchuk, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov funktsionalnykh klassov iz $L_{2}$”, Matem. zametki, 78:5 (2005), 792–796 | MR | Zbl

[4] S. B. Vakarchuk, V. I. Zabutnaya, “Tochnoe neravenstvo tipa Dzheksona – Stechkina v $L_{2}$ i poperechniki funktsionalnykh klassov”, Matem. zametki, 86:3 (2009), 328–336 | MR | Zbl

[5] M. Sh. Shabozov, G. A. Yusupov, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov nekotorykh klassov funktsii v $L_{2}$”, Sib. matem. zhurnal, 52:6 (2011), 1414–1427 | MR | Zbl

[6] M. Sh. Shabozov, S. S. Khorazmshoev, “Nailuchshie polinomialnye priblizheniya differentsiruemykh periodicheskikh funktsii i znacheniya poperechnikov klassov funktsii, zadavaemykh obobschennymi modulyami nepreryvnosti v $L_{2}$”, Izv. AN RT. Otd. fiz.-mat., khim., geol. i tekhn. n., 1:142 (2011), 7–19

[7] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstvo tipa Dzheksona-Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_{2}$”, Matem. zametki, 92:4 (2012), 497–514 | Zbl

[8] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstvo mezhdu nailuchshimi polinomialnymi priblizheniyami i nekotorymi kharakteristikami gladkosti v prostranstve $L_{2}$ i poperechniki klassov funktsii”, Matem. zametki, 99:2 (2016), 215–238 | Zbl

[9] S. B. Vakarchuk, A. N. Schitov, “Nailuchshie polinomialnye priblizheniya v $L_{2}$ i poperechniki nekotorykh klassov funktsii”, Ukr. matem. zhurnal., 56:11 (2004), 1458–1466 | MR | Zbl

[10] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, MGU, M., 1976

[11] A. Pinkus, $n$-Widths in Approximation Theory, Springer-Verlag, Heidelberg, New York, Tokyo, Berlin, 1985 | MR | Zbl