Neural Network for Prediction of Curie Temperature of Two-Dimensional Ising Model
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 51-60
Voir la notice de l'article provenant de la source Math-Net.Ru
The authors describe a method for determining the critical point of a second-order phase transitions using a convolutional neural network based on the Ising model on a square lattice. Data for training were obtained using Metropolis algorithm for different temperatures. The neural network was trained on the data corresponding to the low-temperature phase, that is a ferromagnetic one and high-temperature phase, that is a paramagnetic one, respectively. After training, the neural network analyzed input data from the entire temperature range: from $0.1$ to $5.0$ (in dimensionless units) and determined the Curie temperature $T_c$. The accuracy of the obtained results was estimated relative to the Onsager solution for a flat lattice of Ising spins.
@article{DVMG_2021_21_1_a4,
author = {A. O. Korol and V. Yu. Kapitan},
title = {Neural {Network} for {Prediction} of {Curie} {Temperature} of {Two-Dimensional} {Ising} {Model}},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {51--60},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a4/}
}
TY - JOUR AU - A. O. Korol AU - V. Yu. Kapitan TI - Neural Network for Prediction of Curie Temperature of Two-Dimensional Ising Model JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2021 SP - 51 EP - 60 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a4/ LA - ru ID - DVMG_2021_21_1_a4 ER -
A. O. Korol; V. Yu. Kapitan. Neural Network for Prediction of Curie Temperature of Two-Dimensional Ising Model. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 51-60. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a4/