On linear continuous operators on $C_p$-spaces
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 45-50
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper describes the structure of a linear continuous operator on the space of continuous functions in the topology of pointwise convergence. The corresponding theorem is a generalization of A. V. Arkhangel'skii's theorem on the general form of a continuous linear functional on such spaces.
@article{DVMG_2021_21_1_a3,
author = {A. P. Devyatkov and S. D. Shalaginov},
title = {On linear continuous operators on $C_p$-spaces},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {45--50},
year = {2021},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a3/}
}
A. P. Devyatkov; S. D. Shalaginov. On linear continuous operators on $C_p$-spaces. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 45-50. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a3/
[1] V. Tkachuk, A Cp-theory problem book, v. I–IV, Problem Books in Mathematics, Springer, 2011–2015 | DOI | MR | Zbl
[2] A. V. Arkhangelskii, Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989
[3] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971
[4] C. C. Kutateladze, Osnovy funktsionalnogo analiza, Izdatelstvo Instituta matematiki, Novosibirsk, 2000 | MR