Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2021_21_1_a1, author = {B. Venkateswarlu and P. Thirupathi Reddy and R. Madhuri Shilpa and Sujatha}, title = {A new subclass of meromorphic function with positive coefficients defined by {Hurwitz-Lerch} {Zeta} functions}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {26--38}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a1/} }
TY - JOUR AU - B. Venkateswarlu AU - P. Thirupathi Reddy AU - R. Madhuri Shilpa AU - Sujatha TI - A new subclass of meromorphic function with positive coefficients defined by Hurwitz-Lerch Zeta functions JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2021 SP - 26 EP - 38 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a1/ LA - en ID - DVMG_2021_21_1_a1 ER -
%0 Journal Article %A B. Venkateswarlu %A P. Thirupathi Reddy %A R. Madhuri Shilpa %A Sujatha %T A new subclass of meromorphic function with positive coefficients defined by Hurwitz-Lerch Zeta functions %J Dalʹnevostočnyj matematičeskij žurnal %D 2021 %P 26-38 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a1/ %G en %F DVMG_2021_21_1_a1
B. Venkateswarlu; P. Thirupathi Reddy; R. Madhuri Shilpa; Sujatha. A new subclass of meromorphic function with positive coefficients defined by Hurwitz-Lerch Zeta functions. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 26-38. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a1/
[21] H. Silverman, “Univalent functions with negative coefficients”, Proc. Amer. Math. Soc., 51 (1975), 109–116 | DOI | MR | Zbl
[22] A. W. Goodman, “On uniformly convex functions”, Ann. Polon. Math., 56 (1991), 87–92 | DOI | MR | Zbl
[23] A. W. Goodman, “On uniformly starlike functions”, J. Math. Anal. Appl., 155:2 (1991), 364–370 | DOI | MR | Zbl
[24] F. Ronning, “Uniformly convex functions and a corresponding class of starlike functions”, Proc. Amer. Math. Soc., 118:1 (1993), 189–196 | DOI | MR | Zbl
[25] F. Ronning, “Integral representations of bounded starlike functions”, Ann. Polon. Math., 60:3 (1995), 289–297 | DOI | MR | Zbl
[26] O. P. Ahuja, G. Murugusundaramoorthy and N. Magesh, “Integral means for uniformly convex and starlike functions associated with generalized hypergeometric functions”, J. Inequal. Pure Appl. Math., 8:4 (2007), Art. 118, 1–9 | MR
[27] R. Bharati, R. Parvatham and A. Swaminathan, “On subclasses of uniformly convex functions and corresponding class of starlike functions”, Tamkang J. Math., 28:1 (1997), 17–32 | DOI | MR | Zbl
[28] G. Murugusundaramoorthy and N. Magesh, “Certain subclasses of starlike functions of complex order involving generalized hypergeometric functions”, Int. J. Math. Math. Sci., 2010, art. ID 178605, 12 pp. | MR
[29] S. O. Altinta, H. Irmak and H. M. Srivastava, “A family of meromorphically univalent functions with positive coefficients”, Panamer. Math. J., 5:1 (1995), 75–81 | MR | Zbl
[30] M. K. Aouf, “On a certain class of meromorphic univalent functions with positive coefficients”, Rend. Mat., 11 (1991), 209–219 | MR | Zbl
[31] M. L. Mogra, T. R. Reddy and O. P. Juneja, “Meromorphic univalent functions with positive coefficients”, Bull. Austral. Math. Soc., 32:2 (1985), 161–176 | DOI | MR | Zbl
[32] H. M. Srivastava and J. Choi, Series associated with the Zeta and related functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001 | MR | Zbl
[33] J. Choi and H. M. Srivastava, “Certain families of series associated with the Hurwitz–Lerch Zeta function”, Appl. Math. Comput., 170 (2005), 399–409 | MR | Zbl
[34] C. Ferreira and J. L. Lopez, “Asymptotic expansions of the Hurwitz–Lerch Zeta function Zeta function”, J. Math. Anal. Appl., 298 (2004), 210–224 | DOI | MR | Zbl
[35] M. Garg, K. Jain and H. M. Srivastava, “Some relationships between the generalized Apostol–Bernoulli polynomials and Hurwitz–Lerch Zeta functions”, Integral Transforms Spec. Funct., 17 (2006), 803–815 | DOI | MR | Zbl
[36] S.-D. Lin and H. M. Srivastava, “Some families of the Hurwitz–Lerch Zeta functions and associated fractional derivative and other integral representations”, Appl. Math. Comput., 154 (2004), 725–733 | DOI | MR | Zbl
[37] Q. M. Luo and H. M. Srivastava, “Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials”, J. Math. Anal. Appl., 308 (2005), 290–302 | DOI | MR | Zbl
[38] H. M. Srivastava, M.-J. Luo, and R. K. Raina, “New results involving a class of generalized Hurwitz–Lerch Zeta functions and their applications”, Turkish J. Anal. Number Theory, 1 (2013), 26–35 | DOI
[39] F. Ghanim, “A study of a certain subclass of Hurwitz–Lerch-Zeta function related to a linear operator”, Abstr. Appl. Anal., 2013 (2013), Article ID 763756, 7 pp. | DOI | MR | Zbl
[40] H. M. Srivastava and A. A. Attiya, “An integral operator associated with the Hurwitz–Lerch Zeta function and diffierential subordination”, Integral Transforms Spec. Funct., 18 (2007), 207–216 | DOI | MR | Zbl
[41] S. Sivaprasad Kumar, V. Ravichandran and G. Murugusundaramoorthy, “Classes of meromorphic p-valent parabolic starlike functions with positive coefficients”, Aust. J. Math. Anal. Appl., 2:2 (2005), art. 3, 9 pp. | MR
[42] W. G. Atshan and S. R. Kulkarni, “Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivative”, I. J. Rajasthan Acad. Phys. Sci., 6:2 (2007), 129-140 | MR
[43] H. Silverman, “Partial sums of starlike and convex functions”, J. Math. Anal. Appl., 209:1 (1997), 221–227 | DOI | MR | Zbl
[44] E. M. Silvia, “On partial sums of convex functions of order $\alpha$”, Houston J. Math., 11:3 (1985), 397–404 | MR | Zbl
[45] M. K. Aouf and H. Silverman, “Partial sums of certain meromorphic $p$-valent functions”, J. Inequal. Pure Appl. Math., 7:4 (2006), art. 119, 7 pp. | MR
[46] A. W. Goodman, “Univalent functions and non-analytic curves”, Proc. Amer. Math. Soc., 8 (1957), 598–601 | DOI | MR | Zbl
[47] St. Ruscheweyh, “Neighbourhoods of univalent functions”, Proc. Amer. Math. Soc., 81 (1981), 521–527 | DOI | MR | Zbl