A new subclass of meromorphic function with positive coefficients defined by Hurwitz-Lerch Zeta functions
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 26-38

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce and study a new subclass of meromorphic univalent functions defined by Hurwitz-Lerch Zeta function. We obtain coefficient inequalities, extreme points, radius of starlikeness and convexity. Finally we obtain partial sums and neighborhood properties for the class $\sigma ^* ( \gamma , k, \lambda, b, s) .$
@article{DVMG_2021_21_1_a1,
     author = {B. Venkateswarlu and P. Thirupathi Reddy and R. Madhuri Shilpa and Sujatha},
     title = {A new subclass of meromorphic function with positive coefficients defined by  {Hurwitz-Lerch} {Zeta} functions},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {26--38},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a1/}
}
TY  - JOUR
AU  - B. Venkateswarlu
AU  - P. Thirupathi Reddy
AU  - R. Madhuri Shilpa
AU  - Sujatha
TI  - A new subclass of meromorphic function with positive coefficients defined by  Hurwitz-Lerch Zeta functions
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 26
EP  - 38
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a1/
LA  - en
ID  - DVMG_2021_21_1_a1
ER  - 
%0 Journal Article
%A B. Venkateswarlu
%A P. Thirupathi Reddy
%A R. Madhuri Shilpa
%A Sujatha
%T A new subclass of meromorphic function with positive coefficients defined by  Hurwitz-Lerch Zeta functions
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 26-38
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a1/
%G en
%F DVMG_2021_21_1_a1
B. Venkateswarlu; P. Thirupathi Reddy; R. Madhuri Shilpa; Sujatha. A new subclass of meromorphic function with positive coefficients defined by  Hurwitz-Lerch Zeta functions. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 26-38. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a1/