Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2020_20_2_a7, author = {K. V. Makarova and A. G. Makarov and M. A. Padalko and V. S. Strongin and K. V. Nefedev}, title = {Multispin {Monte} {Carlo} {Method}}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {212--220}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a7/} }
TY - JOUR AU - K. V. Makarova AU - A. G. Makarov AU - M. A. Padalko AU - V. S. Strongin AU - K. V. Nefedev TI - Multispin Monte Carlo Method JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2020 SP - 212 EP - 220 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a7/ LA - ru ID - DVMG_2020_20_2_a7 ER -
%0 Journal Article %A K. V. Makarova %A A. G. Makarov %A M. A. Padalko %A V. S. Strongin %A K. V. Nefedev %T Multispin Monte Carlo Method %J Dalʹnevostočnyj matematičeskij žurnal %D 2020 %P 212-220 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a7/ %G ru %F DVMG_2020_20_2_a7
K. V. Makarova; A. G. Makarov; M. A. Padalko; V. S. Strongin; K. V. Nefedev. Multispin Monte Carlo Method. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 212-220. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a7/
[1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, “Equation of state calculations by fast computing machines”, The journal of chemical physics, 21:6 (1953), 1087–1092 | DOI | Zbl
[2] F. Barakona, “On the computational complexity of Ising spin glass models”, Journal of Physics A: Mathematical and General, 15:10 (1982), 3241 | DOI | MR
[3] R. H. Swendsen, J. Wang, “Replica Monte Carlo simulation of spin-glasses”, Physical review letters, 57:21 (1986), 2607 | DOI | MR
[4] R. H. Swendsen, J. Wang, “Nonuniversal critical dynamics in Monte Carlo simulations”, Physical review letters, 58:2 (1987), 86 | DOI | MR
[5] F. Wang, D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states”, Physical review letters, 86:10 (2001), 2050 | DOI
[6] Yu. A. Shevchenko, A. G. Makarov, P. D. Andriushchenko, K. V. Nefedev, “Multicanonical sampling of the space of states of H(2, n)-vector models”, Journal of Experimental and Theoretical Physics, 124:6 (2017), 982–993 | DOI | MR
[7] F. Wang, P. D. Landau, “Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States”, Phys. Rev. Lett., 86:10 (2001), 2050–2053 | DOI
[8] E. Bittner, A. Nußbaumer, W. Janke, “Make life simple: Unleash the full power of the parallel tempering algorithm”, Physical review letters, 101:13 (2008), 130603 | DOI
[9] R. H. Swendsen, J. Wang, “Nonuniversal critical dynamics in Monte Carlo simulations”, Phys. Rev. Lett., 58:2 (1987), 86–88 | DOI | MR
[10] Y. Tomita, Y. Okabe, “Crossover and self-averaging in the two-dimensional site-diluted Ising model: Application of probability-changing cluster algorithm”, Physical Review E, 64:3 (2001), 036114 | DOI
[11] A. K. Hartmann, “Ground-state clusters of two-, three-, and four-dimensional +-J Ising spin glasses”, Phys. Rev. E, 63:1 (2000), 016106 | DOI
[12] O. Melchert, A. K. Hartmann, “Analysis of the phase transition in the two-dimensional Ising ferromagnet using a Lempel-Ziv string-parsing scheme and black-box data-compression utilities”, Phys. Rev. E, 91:2 (2015), 023306 | DOI
[13] A. E. Ferdinand, M. E. Fisher, “Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice”, Phys. Rev., 185:2 (1969), 832–846 | DOI
[14] C. Lacroix, P. Mendels, and F. Mila, “Introduction to frustrated magnetism: materials, experiments, theory”, Springer Science Business Media, 164 (2011)
[15] Gia-Wei Chern, P. Mellado, and O. Tchernyshyov, “Two-Stage Ordering of Spins in Dipolar Spin Ice on the Kagome Lattice”, Phys. Rev. Lett., 106:20 (2011), 207202 | DOI
[16] G. Möller and R. Moessner, “Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays”, Phys. Rev. B, 80:14 (2009), 140409 | DOI
[17] I. A. Chioar, N. Rougemaille and B. Canals, “Ground-state candidate for the classical dipolar kagome Ising antiferromagnet”, Phys. Rev. B, 93:21 (2016), 214410 | DOI
[18] Petr Andriushchenko, “Influence of cutoff dipole interaction radius and dilution on phase transition in kagome artificial spin ice”, Journal of Magnetism and Magnetic Materials, 476 (2019), 284–288 | DOI
[19] A. A. Sorokin, S. V. Makogonov and S. P. Korolev, “The Information Infrastructure for Collective Scientific Work in the Far East of Russia”, Scientific and Technical Information Processing, 44:4 (2017), 302–304 | DOI