Multispin Monte Carlo Method
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 212-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article offers a Monte Carlo cluster method for numerically calculating a statistical sample of the state space of vector models. The statistical equivalence of subsystems in the Ising model and quasi-Markov random walks can be used to increase the efficiency of the algorithm for calculating thermodynamic means. The cluster multispin approach extends the computational capabilities of the Metropolis algorithm and allows one to find configurations of the ground and low-energy states.
@article{DVMG_2020_20_2_a7,
     author = {K. V. Makarova and A. G. Makarov and M. A. Padalko and V. S. Strongin and K. V. Nefedev},
     title = {Multispin {Monte} {Carlo} {Method}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {212--220},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a7/}
}
TY  - JOUR
AU  - K. V. Makarova
AU  - A. G. Makarov
AU  - M. A. Padalko
AU  - V. S. Strongin
AU  - K. V. Nefedev
TI  - Multispin Monte Carlo Method
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 212
EP  - 220
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a7/
LA  - ru
ID  - DVMG_2020_20_2_a7
ER  - 
%0 Journal Article
%A K. V. Makarova
%A A. G. Makarov
%A M. A. Padalko
%A V. S. Strongin
%A K. V. Nefedev
%T Multispin Monte Carlo Method
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 212-220
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a7/
%G ru
%F DVMG_2020_20_2_a7
K. V. Makarova; A. G. Makarov; M. A. Padalko; V. S. Strongin; K. V. Nefedev. Multispin Monte Carlo Method. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 212-220. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a7/

[1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, “Equation of state calculations by fast computing machines”, The journal of chemical physics, 21:6 (1953), 1087–1092 | DOI | Zbl

[2] F. Barakona, “On the computational complexity of Ising spin glass models”, Journal of Physics A: Mathematical and General, 15:10 (1982), 3241 | DOI | MR

[3] R. H. Swendsen, J. Wang, “Replica Monte Carlo simulation of spin-glasses”, Physical review letters, 57:21 (1986), 2607 | DOI | MR

[4] R. H. Swendsen, J. Wang, “Nonuniversal critical dynamics in Monte Carlo simulations”, Physical review letters, 58:2 (1987), 86 | DOI | MR

[5] F. Wang, D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states”, Physical review letters, 86:10 (2001), 2050 | DOI

[6] Yu. A. Shevchenko, A. G. Makarov, P. D. Andriushchenko, K. V. Nefedev, “Multicanonical sampling of the space of states of H(2, n)-vector models”, Journal of Experimental and Theoretical Physics, 124:6 (2017), 982–993 | DOI | MR

[7] F. Wang, P. D. Landau, “Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States”, Phys. Rev. Lett., 86:10 (2001), 2050–2053 | DOI

[8] E. Bittner, A. Nußbaumer, W. Janke, “Make life simple: Unleash the full power of the parallel tempering algorithm”, Physical review letters, 101:13 (2008), 130603 | DOI

[9] R. H. Swendsen, J. Wang, “Nonuniversal critical dynamics in Monte Carlo simulations”, Phys. Rev. Lett., 58:2 (1987), 86–88 | DOI | MR

[10] Y. Tomita, Y. Okabe, “Crossover and self-averaging in the two-dimensional site-diluted Ising model: Application of probability-changing cluster algorithm”, Physical Review E, 64:3 (2001), 036114 | DOI

[11] A. K. Hartmann, “Ground-state clusters of two-, three-, and four-dimensional +-J Ising spin glasses”, Phys. Rev. E, 63:1 (2000), 016106 | DOI

[12] O. Melchert, A. K. Hartmann, “Analysis of the phase transition in the two-dimensional Ising ferromagnet using a Lempel-Ziv string-parsing scheme and black-box data-compression utilities”, Phys. Rev. E, 91:2 (2015), 023306 | DOI

[13] A. E. Ferdinand, M. E. Fisher, “Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice”, Phys. Rev., 185:2 (1969), 832–846 | DOI

[14] C. Lacroix, P. Mendels, and F. Mila, “Introduction to frustrated magnetism: materials, experiments, theory”, Springer Science Business Media, 164 (2011)

[15] Gia-Wei Chern, P. Mellado, and O. Tchernyshyov, “Two-Stage Ordering of Spins in Dipolar Spin Ice on the Kagome Lattice”, Phys. Rev. Lett., 106:20 (2011), 207202 | DOI

[16] G. Möller and R. Moessner, “Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays”, Phys. Rev. B, 80:14 (2009), 140409 | DOI

[17] I. A. Chioar, N. Rougemaille and B. Canals, “Ground-state candidate for the classical dipolar kagome Ising antiferromagnet”, Phys. Rev. B, 93:21 (2016), 214410 | DOI

[18] Petr Andriushchenko, “Influence of cutoff dipole interaction radius and dilution on phase transition in kagome artificial spin ice”, Journal of Magnetism and Magnetic Materials, 476 (2019), 284–288 | DOI

[19] A. A. Sorokin, S. V. Makogonov and S. P. Korolev, “The Information Infrastructure for Collective Scientific Work in the Far East of Russia”, Scientific and Technical Information Processing, 44:4 (2017), 302–304 | DOI