Finite-size scaling in ferromagnetic spin systems on the pyrochlore lattice
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 255-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present the results of the high-performance computations for the Ising model, the XY-model and the classical Heisenberg model for the pyrochlore lattice. We used Wolff and Swendsen-Wang cluster algorithms with GPU parallelization for the calculations. We obtained critical exponents and critical temperatures using finite-size scaling approach.
@article{DVMG_2020_20_2_a13,
     author = {K. S. Soldatov and M. A. Padalko and V. S. Strongin and D. Yu. Kapitan and E. V. Vasil'ev and A. E. Rybin and V. Yu. Kapitan and K. V. Nefedev},
     title = {Finite-size scaling in ferromagnetic spin systems on the pyrochlore lattice},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {255--266},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a13/}
}
TY  - JOUR
AU  - K. S. Soldatov
AU  - M. A. Padalko
AU  - V. S. Strongin
AU  - D. Yu. Kapitan
AU  - E. V. Vasil'ev
AU  - A. E. Rybin
AU  - V. Yu. Kapitan
AU  - K. V. Nefedev
TI  - Finite-size scaling in ferromagnetic spin systems on the pyrochlore lattice
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 255
EP  - 266
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a13/
LA  - ru
ID  - DVMG_2020_20_2_a13
ER  - 
%0 Journal Article
%A K. S. Soldatov
%A M. A. Padalko
%A V. S. Strongin
%A D. Yu. Kapitan
%A E. V. Vasil'ev
%A A. E. Rybin
%A V. Yu. Kapitan
%A K. V. Nefedev
%T Finite-size scaling in ferromagnetic spin systems on the pyrochlore lattice
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 255-266
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a13/
%G ru
%F DVMG_2020_20_2_a13
K. S. Soldatov; M. A. Padalko; V. S. Strongin; D. Yu. Kapitan; E. V. Vasil'ev; A. E. Rybin; V. Yu. Kapitan; K. V. Nefedev. Finite-size scaling in ferromagnetic spin systems on the pyrochlore lattice. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 255-266. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a13/

[1] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford Univ. Press, New York, 1971

[2] C.-K. Hu, “Historical Review on Analytic, Monte Carlo, and Renormalization Group Approaches to Critical Phenomena of Some Lattice Models”, Chinese J. Phys., 52:1 (2014), 1–76 | MR

[3] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, K. W. Godfrey, “Geometrical Frustration in the Ferromagnetic Pyrochlore $Ho_2 Ti_2 O_7$”, Phys. Rev. Lett., 79:13 (1997)

[4] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, B. S. Shastry, “Zero-point entropy inspinice”, Nature (London), 399 (1999), 333–335

[5] S. T. Bramwell, J. P. Gingras, “Spin Ice State in Frustrated Magnetic Pyrochlore Materials”, Science, 294:5546 (2001), 1495–1501

[6] X. Ke, R. S. Freitas, B. G. Ueland, G. C. Lau, M. L. Dahlberg, R. J. Cava, R. Moessner, P. Schiffer, “Nonmonotonic Zero-Point Entropy in Diluted Spin Ice”, Phys. Rev. Lett., 99 (2007), 137203

[7] Y. Shevchenko, K. Nefedev, Y. Okabe, “Entropy of diluted antiferromagnetic Ising models on frustrated lattices using the Wang-Landau method”, Physical Review E, 95:5 (2017), 052132 | DOI | MR

[8] D. P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 3rd edition, Cambridge University Press, Cambridge, 2009 | MR | Zbl

[9] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, “Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., 21:6 (1953), 1087 | Zbl

[10] R. H. Swendsen, J. S. Wang, “Nonuniversal critical dynamics in Monte Carlo simulations”, Phys. Rev. Lett., 58 (1987), 86 | MR

[11] U. Wolff, “Collective Monte Carlo Updating for Spin Systems”, Phys. Rev. Lett., 62 (1989), 361

[12] Y. Komura, Y. Okabe, “GPU-based Swendsen-Wang multi-cluster algorithm for the simulation of two-dimensional classical spin systems”, Comput. Phys. Comm., 183 (2012), 1155 | DOI | MR

[13] K. A. Hawick, A. Leist, D. P. Playne, “Parallel Graph Component Labelling with GPUs and CUDA”, Parallel Computing, 36 (2010), 655 | DOI | Zbl

[14] O. Kalentev, A. Rai, S. Kemnitzb, R. Schneider, “Connected component labeling on a 2D grid using CUDA”, J. Parallel Distrib. Comput., 71 (2011), 615 | DOI

[15] Y. Komura, “A generalized GPU-based connected component labeling algorithm”, Comput. Phys. Comm., 194 (2015), 54, arXiv: 1603.08357 | DOI

[16] Y. Komura, Y. Okabe, “CUDA programs for the GPU computing of the Swendsen–Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models”, Comput. Phys. Comm., 185 (2014), 1038–1043 | DOI | MR

[17] Y. Komura, Y. Okabe, “Improved CUDA programs for GPU computing of Swendsen–Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models”, Comput. Phys. Comm., 200 (2016), 400–401 | DOI | MR

[18] Y. Komura, Y. Okabe, “Large-Scale Monte Carlo Simulation of Two-Dimensional Classical XY Model Using Multiple GPUs”, J. Phys. Soc. Jpn., 81 (2012), 113001 | DOI

[19] Y. Komura, Y. Okabe, “High-Precision Monte Carlo Simulation of the Ising Models on the Penrose Lattice and the Dual Penrose Lattice”, J. Phys. Soc. Jpn., 85 (2016), 044004 | DOI

[20] H. Shinaoka, Y. Tomita, Y. Motome, “Effect of magnetoelastic coupling on spin-glass behavior in Heisenberg pyrochlore antiferromagnets with bond disorder”, Phys. Rev. B, 90 (2014), 165119 | DOI

[21] J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, Oxford University Press, O, 1932

[22] M. E. Fisher, “The Theory of critical point singularities”, Proc. 1970 E. Fermi Int. School of Physics, v. 51, ed. M.S. Green, Academic, New York, 1971, 1–99

[23] K. Binder, “Finite size scaling analysis of ising model block distribution functions”, Z. Phys. B: Condens. Matter, 43 (1981), 119 | DOI

[24] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, V 10 t. T. 5 (V 2 ch. Ch.1) Statisticheskaya fizika, Fizmatlit, M., 2013

[25] C.-K. Hu, C.-Y. Lin, J.-A. Chen, “Universal Scaling Functions in Critical Phenomena”, Phys. Rev. Lett., 75 (1995), 193 | DOI

[26] Y. Okabe, M. Kikuchi, “Universal finite-size-scaling functions”, International Journal of Modern Physics C, 7 (1996), 287–294 | DOI

[27] Y. Okabe, K. Kaneda, M. Kikuchi, C.-K. Hu, “Universal finite-size scaling functions for critical systems with tilted boundary conditions”, Phys. Rev. E, 59 (1999), 1585 | DOI

[28] Y. Tomita, Y. Okabe, C.-K. Hu, “Cluster analysis and finite-size scaling for Ising spin systems”, Phys. Rev. E, 60 (1999), 2716 | DOI

[29] M.-C. Wu, C.-K. Hu, N. Sh. Izmailian, “Universal finite-size scaling functions with exact nonuniversal metric factors”, Phys. Rev. E, 67 (2003), 065103(R) | DOI

[30] H. W. J. Blöte, E. Luijten, J. R. Heringa, “Ising universality in three dimensions: a Monte Carlo study”, J. Phys. A: Math. Gen., 28 (1995), 6289 | DOI | Zbl

[31] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, “Critical behavior of the three-dimensional XY universality class”, Phys. Rev. B, 63 (2001), 214503 | DOI

[32] A. P. Gottlob, M. Hasenbusch, S. Meyer, “Critical behaviourof the 3D XY-model: A Monte Carlo study”, Nucl. Phys. B (Proc. Suppl.), 30 (1993), 838 | DOI

[33] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, “Critical exponents and equation of state of the three-dimensional Heisenberg universality class”, Phys. Rev. B, 65 (2002), 144520 | DOI

[34] C. Holm, W. Janke, “Critical exponents of the classical three-dimensional Heisenberg model: A single-cluster Monte Carlo study”, Phys. Rev. B, 48 (1993), 936 | DOI