Extremal decomposition problems for p-harmonic Robin radius
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 135-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorems on the extremal decomposition of plane domains concerning to the products of Robin's radii are extended to the case of domains in Euclidean space. In some cases, the classical non-overlapping condition is weakened. The proofs are based on the moduli technique for families of curves and dissymmetrization.
@article{DVMG_2020_20_2_a1,
     author = {A. S. Afanaseva-Grigoreva and E. G. Prilepkina},
     title = {Extremal decomposition problems for p-harmonic  {Robin} radius},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {135--143},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a1/}
}
TY  - JOUR
AU  - A. S. Afanaseva-Grigoreva
AU  - E. G. Prilepkina
TI  - Extremal decomposition problems for p-harmonic  Robin radius
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 135
EP  - 143
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a1/
LA  - ru
ID  - DVMG_2020_20_2_a1
ER  - 
%0 Journal Article
%A A. S. Afanaseva-Grigoreva
%A E. G. Prilepkina
%T Extremal decomposition problems for p-harmonic  Robin radius
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 135-143
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a1/
%G ru
%F DVMG_2020_20_2_a1
A. S. Afanaseva-Grigoreva; E. G. Prilepkina. Extremal decomposition problems for p-harmonic  Robin radius. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 135-143. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a1/

[1] M. A. Lavrentev, “K teorii konformnykh otobrazhenii”, Trudy fiz. mat. in-ta im. V.A. Steklova, 5 (1934), 159–245 | Zbl

[2] P. P. Kufarev, “O konformnykh otobrazheniyakh dopolnitelnykh oblastei”, Dokl. akad. nauk SSSR, 73 (1950), 881–884 | Zbl

[3] G. V. Kuzmina, “Ob odnom ekstremalno-metricheskom podkhode k zadacham ob ekstremalnom razbienii inbook Analiticheskaya teoriya chisel i teoriya funktsii. 32”, Zap. nauchn. sem. POMI, 449, 2016, 214–229

[4] A. K. Bakhtin, I. V. Denega, “Sharp estimates of products of inner radii of non-overlapping domains in the complex plane”, Probl. Anal. Issues Anal., 8(26):1 (2019), 17–31 | DOI | MR | Zbl

[5] A. Bakhtin, L. Vygivska and I. Denega, “N-Radial Systems of Points and Problems for Non-Overlapping Domains”, Lobachevskii Journal of Mathematics, 38:2 (2017), 229–235 | DOI | MR | Zbl

[6] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhauser/Springer, Basel, 2014 | MR | Zbl

[7] V. N. Dubinin, D. A. Kirillova, “K zadacham ob ekstremalnom razbienii”, Analiticheskaya teoriya chisel i teoriya funktsii. 23, Zap. nauchn. sem. POMI, 357, 2008, 54–74

[8] E. G. Prilepkina, “O printsipakh kompozitsii dlya privedennykh modulei”, Sib. matem. zhurn., 52:6 (2011), 1357–1372 | MR | Zbl

[9] B. E Levitskii, “Privedennyi p-modul i vnutrennii p-garmonicheskii radius”, Dokl. AN SSSR, 316:4 (1991), 812–815 | MR

[10] C. Bandle, M. Flucher, “Harmonic radius and concentration of energy, hyperbolic radius and Liouvilles equations $\Delta U=0$ and $\Delta U=U^{\frac{n+2}{n-2}}$”, SIAM Review, 38:2 (1996), 191–238 | DOI | MR | Zbl

[11] W. Wang, “N-Capacity, N-harmonic radius and N-harmonic transplantation”, J. Math. Anal. Appl., 327:1 (2007), 155–174 | DOI | MR | Zbl

[12] V. N. Dubinin, E. G. Prilepkina, “Ob ekstremalnom razbienii prostranstvennykh oblastei”, Analiticheskaya teoriya chisel i teoriya funktsii. 15, Zap. nauchn. sem. POMI, 254, 1998, 95–107

[13] K. A. Gulyaeva, S. I. Kalmykov, E. G. Prilepkina, “Extremal decomposition problems in the Euclidean space”, International Journal of Mathematical Analysis, 9:56 (2015), 2763–2773 | DOI

[14] S. Kalmykov, E. Prilepkina, “Extremal decomposition problems for p-harmonic radius”, Analysis Mathematica, 43 (2017), 49–65 | DOI | MR | Zbl

[15] C. I. Kalmykov, E. G. Prilepkina, “O p-garmonicheskom radiuse Robena v evklidovom prostranstve”, Analiticheskaya teoriya chisel i teoriya funktsii. 32, Zap. nauchn. sem. POMI, 449, 2016, 196-–213

[16] L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, N.J., 1966 | MR | Zbl

[17] B. Fuglede, “Extremal length and functional completion”, Acta. Math., 98:3-4 (1957), 171–219 | DOI | MR | Zbl

[18] M. Vuorinen, Conformal geometry and quasiregular mapping, Lecture Notes in Mathematics, Springer-Verlag, 1988 | MR

[19] V. A. Shlyk, “O ravenstve $p$-emkosti i $p$-modulya”, Sib. matem. zhurn., 34:6 (1993), 216–-221 | MR | Zbl

[20] V. N. Dubinin, “Capacities and geometric transformations of subsets in n-space”, Geometric and Functional Analysis, 3:4 (1993), 342–369 | DOI | MR | Zbl

[21] F. W. Gehring, “A remark on domains quasiconformally equivalent to a ball”, Ann. Acad. Sci. Fenn., 2 (1976), 47–155 | MR