Extremal decomposition problems for p-harmonic Robin radius
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 135-143

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorems on the extremal decomposition of plane domains concerning to the products of Robin's radii are extended to the case of domains in Euclidean space. In some cases, the classical non-overlapping condition is weakened. The proofs are based on the moduli technique for families of curves and dissymmetrization.
@article{DVMG_2020_20_2_a1,
     author = {A. S. Afanaseva-Grigoreva and E. G. Prilepkina},
     title = {Extremal decomposition problems for p-harmonic  {Robin} radius},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {135--143},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a1/}
}
TY  - JOUR
AU  - A. S. Afanaseva-Grigoreva
AU  - E. G. Prilepkina
TI  - Extremal decomposition problems for p-harmonic  Robin radius
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 135
EP  - 143
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a1/
LA  - ru
ID  - DVMG_2020_20_2_a1
ER  - 
%0 Journal Article
%A A. S. Afanaseva-Grigoreva
%A E. G. Prilepkina
%T Extremal decomposition problems for p-harmonic  Robin radius
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 135-143
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a1/
%G ru
%F DVMG_2020_20_2_a1
A. S. Afanaseva-Grigoreva; E. G. Prilepkina. Extremal decomposition problems for p-harmonic  Robin radius. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 135-143. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a1/