Heat flow in a harmonic chain due to an impulse disturbance
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 52-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The heat motion in a one-dimensional semi-infinite chain of coupled harmonic oscillators is studied for the Maxwell distribution of initial velocities and zero initial displacements of the chain particles. It is believed that such initial conditions are achieved by an impulse heating of the sample. Exact analytical expressions for the state correlation functions, local temperature, and local heat current of the chain are obtained.
@article{DVMG_2020_20_1_a4,
     author = {A. I. Gudimenko},
     title = {Heat flow in a harmonic chain due to an impulse disturbance},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {52--57},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a4/}
}
TY  - JOUR
AU  - A. I. Gudimenko
TI  - Heat flow in a harmonic chain due to an impulse disturbance
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 52
EP  - 57
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a4/
LA  - ru
ID  - DVMG_2020_20_1_a4
ER  - 
%0 Journal Article
%A A. I. Gudimenko
%T Heat flow in a harmonic chain due to an impulse disturbance
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 52-57
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a4/
%G ru
%F DVMG_2020_20_1_a4
A. I. Gudimenko. Heat flow in a harmonic chain due to an impulse disturbance. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 52-57. http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a4/

[1] M. A. Guzev, “Tochnaya formula dlya temperatury odnomernogo kristalla”, Dalnevost. matem. zhurn., 18:1 (2018), 34–38 | MR | Zbl

[2] M. A. Guzev, “Tochnaya formula dlya temperatury odnomernogo kristalla”, Dalnevost. matem. zhurn., 18:1 (2018), 39–47 | MR | Zbl

[3] M. A. Guzev, A. A. Dmitriev, “Ostsillyatsionno-zatukhayuschee povedenie temperatury v kristalle”, Dalnevost. matem. zhurn., 17:2 (2017), 170–179 | MR | Zbl

[4] E. Schrödinger, “Zur Dynamik elastisch gekoppelter Punktsysteme”, Annalen der Physik, 44 (1914), 916–934 | DOI | Zbl

[5] J. W. Gibbs, Elementary principles in statistical mechanics, developed with especial reference to the rational foundation of thermodynamics, New York, 1902 | MR | Zbl

[6] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944 | MR | Zbl