Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2020_20_1_a11, author = {A. Yu. Chebotarev and P. R. Mesenev}, title = {An algorithm for solving the boundary value problem of radiation heat transfer without boundary conditions for radiation intensity}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {114--122}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a11/} }
TY - JOUR AU - A. Yu. Chebotarev AU - P. R. Mesenev TI - An algorithm for solving the boundary value problem of radiation heat transfer without boundary conditions for radiation intensity JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2020 SP - 114 EP - 122 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a11/ LA - ru ID - DVMG_2020_20_1_a11 ER -
%0 Journal Article %A A. Yu. Chebotarev %A P. R. Mesenev %T An algorithm for solving the boundary value problem of radiation heat transfer without boundary conditions for radiation intensity %J Dalʹnevostočnyj matematičeskij žurnal %D 2020 %P 114-122 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a11/ %G ru %F DVMG_2020_20_1_a11
A. Yu. Chebotarev; P. R. Mesenev. An algorithm for solving the boundary value problem of radiation heat transfer without boundary conditions for radiation intensity. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 114-122. http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a11/
[1] R. Pinnau, “Analysis of Optimal Boundary Control for Radiative Heat Transfer Modelled by the SP$_1$-System”, Comm. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl
[2] A. E. Kovtanyuk, A. Yu. Chebotarev, “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219 (2013), 9356–9362 | MR | Zbl
[3] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815 | DOI | MR | Zbl
[4] Comput. Math. Math. Phys., 54:4 (2014), 719–726 | DOI | DOI | MR | Zbl
[5] Kovtanyuk A.E., Chebotarev A.Yu., “Statsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Differentsialnye uravneniya, 50:12 (2014), 1590–1597 | DOI | Zbl
[6] Kovtanyuk Andrey E., Chebotarev Alexander Yu., Botkin Nikolai D., and Hoffmann Karl-Heinz, “Theoretical analysis of an optimal control problem of conductive convective radiative heat transfer”, J. Math. Anal. Appl., 412 (2014), 520–/1/2014 | DOI | MR | Zbl
[7] G. V. Grenkin, A. Yu. Chebotarev, “Nestatsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 54:11 (2014), 1806–1816 | DOI | MR | Zbl
[8] Kovtanyuk A.E., Chebotarev A.Yu., Botkin N.D., and Hoffman Karl-Heinz, “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simulat., 20 (2015), 776–784 | DOI | MR | Zbl
[9] G. V. Grenkin, A. Yu. Chebotarev, “Neodnorodnaya nestatsionarnaya zadacha slozhnogo teploobmena”, Sibirskie elektronnye matematicheskie izvestiya, 12:11 (2015), 562–576 | MR | Zbl
[10] G. V. Grenkin, A. Yu. Chebotarev, “Nestatsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Zh. vychisl. matem. fiz., 56:2 (2016), 275–282 | DOI | MR | Zbl
[11] Chebotarev A., Kovtanyuk A., Grenkin G., Botkin N., and Hoffman K.-H. “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433:2 (2016), 1243–1260 | DOI | MR | Zbl
[12] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439 (2016), 678–689 | DOI | MR | Zbl
[13] {Alexander Yu.} Chebotarev, {Andrey E.} Kovtanyuk, {Gleb V.} Grenkin, {Nikolai D.} Botkin, and {Karl Heinz} Hoffmann, “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Applied Mathematics and Computation, 289:10 (2016), 371–380 | MR | Zbl
[14] A. E. Kovtanyuk, A. Yu. Chebotarev, “Nelokalnaya odnoznachnaya razreshimost statsionarnoi zadachi slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 56:5 (2016), 816–823 | DOI | Zbl
[15] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM Math. Model. Numer. Anal., 51:6 (2017), 2511–2519 | DOI | MR | Zbl
[16] Alexander Yu. Chebotarev and Gleb V. Grenkin and Andrey E. Kovtanyuk and Nikolai D. Botkin and Karl-Heinz Hoffmann, “Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions”, Communications in Nonlinear Science and Numerical Simulation, 57 (2018), 290–298 | DOI | MR
[17] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, N. D. Botkin, K.-H. Hoffmann, “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange”, J. Math. Anal. Appl., 460:2 (2018), 737–744 | DOI | MR | Zbl
[18] A. Yu. Chebotarev, R. Pinnau, “An inverse problem for a quasi-static approximate model of radiative heat transfer”, J. Math. Anal. Appl., 472:1 (2019), 737–744 | DOI | MR
[19] G. V. Grenkin, A. Yu. Chebotarev, “Obratnaya zadacha dlya uravnenii slozhnogo teploobmena”, Zh. vychisl. matem. i matem. fiz., 59:8 (2019), 1420–1430 | DOI | MR | Zbl
[20] Alexander Yu. Chebotarev and Andrey E. Kovtanyuk and Nikolai D. Botkin, “Problem of radiation heat exchange with boundary conditions of the Cauchy type”, Communications in Nonlinear Science and Numerical Simulation, 75 (2019), 262–269 | DOI | MR
[21] A. G. Kolobov, T. V. Pak, A. Yu. Chebotarev, “Statsionarnaya zadacha radiatsionnogo teploobmena s granichnymi usloviyami tipa Koshi”, Zh. vychisl. matem. i matem. fiz., 59:7 (2019), 1258–1263 | DOI | Zbl
[22] Differ. Equ., 41:1 (2005), 96–109 | DOI | MR | Zbl
[23] A. A. Amosov, “Stationary nonlinear nonlocal problem of radiative{\textendash}conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, Journal of Mathematical Sciences, 164 (2010), 309–344 | DOI | MR | Zbl
[24] A. A. Amosov, “Unique solvability of a nonstationary problem of radiative-conductive heat exchange in a system of semitransparent bodies”, Russian Journal of Mathematical Physics, 23:3 (2016), 309–334 | DOI | MR | Zbl
[25] A. A. Amosov, “Unique Solvability of Stationary Radiative-Conductive Heat Transfer Problem in a System of Semitransparent Bodies”, Journal of Mathematical Sciences, 224:5 (201), 618–646 | DOI | MR | Zbl
[26] A. A. Amosov, “Asymptotic Behavior of a Solution to the Radiative Transfer Equation in a Multilayered Medium with Diffuse Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 244:4 (2020), 541–575 | DOI | Zbl
[27] A. A. Amosov, N. E. Krymov, “On a Nonstandard Boundary Value Problem Arising in Homogenization of Complex Heat Transfer Problems”, Journal of Mathematical Sciences, 244:3 (2020), 357–377 | DOI | MR | Zbl
[28] S. Fučik, A. Kufner, Nonlinear differential equations, Elsevier, Amsterdam–Oxford–New York, 1980 | MR | Zbl
[29] Fursikov A. V., Optimal Control of Distributed Systems. Theory and Applications, American Mathematical Soc., 1999 | MR
[30] Martin S. Alnæs and Jan Blechta and Johan Hake and August Johansson and Benjamin Kehlet and Anders Logg and Chris Richardson and Johannes Ring and Marie E. Rognes and Garth N. Wells, “The FEniCS Project Version 1.5”, Archive of Numerical Software, 3:100 (2015), 9–23
[31] Anders Logg and Garth N. Wells and Johan Hake, “DOLFIN: a C++/Python Finite Element Library”, Automated Solution of Differential Equations by the Finite Element Method, v. 10, Lecture Notes in Computational Science and Engineering, 84, eds. Anders Logg and Kent-Andre Mardal and Garth N. Wells, Springer, 2012, 173–225 | DOI | MR