On Gauss and Kloosterman sums
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 9-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we calculate averages by parameters of Kloosterman sums, which include Dirichlet characters. They appear when constructing arithmetic trace formulas in the theory of automorphic forms.
@article{DVMG_2020_20_1_a1,
     author = {M. O. Avdeeva and N. V. Gorbatuk and N. A. Shul'ga},
     title = {On {Gauss} and {Kloosterman} sums},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {9--14},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a1/}
}
TY  - JOUR
AU  - M. O. Avdeeva
AU  - N. V. Gorbatuk
AU  - N. A. Shul'ga
TI  - On Gauss and Kloosterman sums
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 9
EP  - 14
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a1/
LA  - ru
ID  - DVMG_2020_20_1_a1
ER  - 
%0 Journal Article
%A M. O. Avdeeva
%A N. V. Gorbatuk
%A N. A. Shul'ga
%T On Gauss and Kloosterman sums
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 9-14
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a1/
%G ru
%F DVMG_2020_20_1_a1
M. O. Avdeeva; N. V. Gorbatuk; N. A. Shul'ga. On Gauss and Kloosterman sums. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 9-14. http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a1/

[1] D. R. Heath-Brown, “The Fourth Power Moment of the Riemann Zeta Function”, Proc. London Math. Soc., 38:3 (1979), 385–422 | DOI | MR | Zbl

[2] A. Selberg, “Über die Fourierkoeffizienten elliptischen Modulformen negativer Dimension”, Neuvième Congrès Math. Scandinaves, Helsingfors, 1938, 320–322 | Zbl

[3] N. V. Kuznetsov, “Gipoteza Petersona dlya parabolicheskikh form vesa nul i gipoteza Linnika. Summy summ Kloostermana”, Matem. sb., 111 (153):3 (1980), 334–383 | MR | Zbl

[4] R. A. Smith, “A generalization of Kuznetsov's identity for Kloosterman sums”, C.R. Math. Rep. Acad. Sci., 11:6 (1980), 315–320, Canada | MR

[5] A. V. Ustinov, “O chisle reshenii sravneniya $xy\equiv l(\operatorname{mod}q)$ pod grafikom dvazhdy nepreryvno differentsiruemoi funktsii”, Algebra i analiz, 20:5 (2008), 186–216

[6] T. Estermann, “On Kloosterman's sum”, Mathematika, 8:1 (1961), 83–86 | DOI | MR | Zbl

[7] G. Devenport, Multiplikativnaya teoriya chisel, Nauka, M., 1971, 200 pp. | MR