On Gauss and Kloosterman sums
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 9-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we calculate averages by parameters of Kloosterman sums, which include Dirichlet characters. They appear when constructing arithmetic trace formulas in the theory of automorphic forms.
@article{DVMG_2020_20_1_a1,
     author = {M. O. Avdeeva and N. V. Gorbatuk and N. A. Shul'ga},
     title = {On {Gauss} and {Kloosterman} sums},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {9--14},
     year = {2020},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a1/}
}
TY  - JOUR
AU  - M. O. Avdeeva
AU  - N. V. Gorbatuk
AU  - N. A. Shul'ga
TI  - On Gauss and Kloosterman sums
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 9
EP  - 14
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a1/
LA  - ru
ID  - DVMG_2020_20_1_a1
ER  - 
%0 Journal Article
%A M. O. Avdeeva
%A N. V. Gorbatuk
%A N. A. Shul'ga
%T On Gauss and Kloosterman sums
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 9-14
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a1/
%G ru
%F DVMG_2020_20_1_a1
M. O. Avdeeva; N. V. Gorbatuk; N. A. Shul'ga. On Gauss and Kloosterman sums. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 9-14. http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a1/

[1] D. R. Heath-Brown, “The Fourth Power Moment of the Riemann Zeta Function”, Proc. London Math. Soc., 38:3 (1979), 385–422 | DOI | MR | Zbl

[2] A. Selberg, “Über die Fourierkoeffizienten elliptischen Modulformen negativer Dimension”, Neuvième Congrès Math. Scandinaves, Helsingfors, 1938, 320–322 | Zbl

[3] N. V. Kuznetsov, “Gipoteza Petersona dlya parabolicheskikh form vesa nul i gipoteza Linnika. Summy summ Kloostermana”, Matem. sb., 111 (153):3 (1980), 334–383 | MR | Zbl

[4] R. A. Smith, “A generalization of Kuznetsov's identity for Kloosterman sums”, C.R. Math. Rep. Acad. Sci., 11:6 (1980), 315–320, Canada | MR

[5] A. V. Ustinov, “O chisle reshenii sravneniya $xy\equiv l(\operatorname{mod}q)$ pod grafikom dvazhdy nepreryvno differentsiruemoi funktsii”, Algebra i analiz, 20:5 (2008), 186–216

[6] T. Estermann, “On Kloosterman's sum”, Mathematika, 8:1 (1961), 83–86 | DOI | MR | Zbl

[7] G. Devenport, Multiplikativnaya teoriya chisel, Nauka, M., 1971, 200 pp. | MR