The generalized Petersson trace formula for congruence subgroups
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a generalization of the Petersson trace formula for holomorphic parabolic forms with positive even weight with respect to congruence subgroup $\Gamma_0 (N) $ of the Dirichlet character modulo $ N $ is proved
@article{DVMG_2020_20_1_a0,
     author = {M. O. Avdeeva},
     title = {The generalized {Petersson} trace formula for congruence subgroups},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a0/}
}
TY  - JOUR
AU  - M. O. Avdeeva
TI  - The generalized Petersson trace formula for congruence subgroups
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 3
EP  - 8
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a0/
LA  - ru
ID  - DVMG_2020_20_1_a0
ER  - 
%0 Journal Article
%A M. O. Avdeeva
%T The generalized Petersson trace formula for congruence subgroups
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 3-8
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a0/
%G ru
%F DVMG_2020_20_1_a0
M. O. Avdeeva. The generalized Petersson trace formula for congruence subgroups. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a0/

[1] D. R. Heath-Brown, “The Fourth Power Moment of the Riemann Zeta Function”, Proc. London Math. Soc., 38:3 (1979), 385–422 | DOI | MR | Zbl

[2] A. Selberg, “Über die Fourierkoeffizienten elliptischen Modulformen negativer Dimension”, Neuvième Congrès Math. Scandinaves, Helsingfors, 1938, 320–322 | Zbl

[3] N. V. Kuznetsov, “Gipoteza Petersona dlya parabolicheskikh form vesa nul i gipoteza Linnika. Summy summ Kloostermana”, Matem. sb., 111 (153):3 (1980), 334–383 | MR | Zbl

[4] A. I. Vinogradov, “Ukorochennoe uravnenie dlya svertok”, Zap. nauchn. sem. POMI, 211 (1994), 104–119 | Zbl

[5] J. A. Andersson, Summation formulae and zeta functions, Doctoral Dissertation, Department of mathematics Stockholm University, 2006, 107 pp.

[6] Kh. Ivanets, E. Kovalskii, Analiticheskaya teoriya chisel, MTsNMO, M, 2014, 715 pp.