Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2019_19_2_a8, author = {Yu. N. Kharchenko}, title = {Solution of one-dimensional lattice gas models}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {245--255}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a8/} }
Yu. N. Kharchenko. Solution of one-dimensional lattice gas models. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 245-255. http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a8/
[1] T. D. Lee, C. N. Yang, “Statistical theory of equations of state and phase transitions. I. Theory of condensation”, Phys. Rev., 87 (1952), 404–410 | DOI | MR
[2] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, New York and London, 1982 | MR | Zbl
[3] E. H. Lieb, D. C. Mfttis, Mathematical Physics in One Dimension, Academic Press, New York and London, 1966 | MR
[4] P. Cambardella, A. Dallmeyer, K. Maiti, M. Malagoli, W. Eberhard, K. Karn, and C. Carbone, “Ferromagnetism in one-dimensional monatomic metal chains”, Nature, 416:6878 (2002), 301–304 | DOI
[5] P. D. Andriushchenko and K. V. Nefedev, “Magnetic phase transition in the lattice Ising model”, Advanced Material Research, 718 (2013), 166–171 | DOI
[6] R. Huang, “Ising spins on randomly multy-branched Hustmi square lattice: Thermodynamics and phase transition in cross-dimensional range”, Physics Letters, A 380 (2016), 3333–3339 | DOI
[7] S. Shabnam, S. DasGupta, S. K. Roy, “Existence of a line of critical points in a two-dimensional Lebwohl Lasher model”, Physics Letters, A 380 (2016), 667–671 | DOI | MR
[8] F. Wang and D. P. Landau, “Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States”, Physics Letters, 86:2050 (2001)
[9] A. A. Dmitriev, V. V. Katrakhov, Yu. N. Kharchenko, Kornevye transfer-matritsy v modelyakh Izinga, Nauka, M., 2004 | MR
[10] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR
[11] V. V. Katrakhov, Yu. N. Kharchenko, “Two-dimensional four-line models of the Ising model type”, Theoretical and Mathematical Physics, 149:2 (2006), 1545–1558 | DOI | MR | Zbl
[12] U. B. Arnalds, J. Cyico, Y. Stopfel, V. Kapaklis, O. Barenbold, M. A. Verschuren, U. Volff, V. Neu, A. Bergman and B. Hjorvarsson, “A new look on the two-dimensional Ising model: thermal artificial spins”, New Journal of Physics, 18:2 (2016), 023008 | DOI
[13] Y. Fan, “One-dimensional Ising model with k-spin interactions”, European Journal of Physics, 32:6 (2011), 1643 | DOI | Zbl
[14] Y. Shevchenko, A. Makarov, K. Nefedev, “Effect of long- and shot-range interactions on the thermodynamics of dipolar spin ice”, Physics Letters, A 381 (2017), 428–434 | DOI