Solution of one-dimensional lattice gas models
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 245-255

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is shown that the thermodynamic limit of the partition function of the statistical models under consideration on a one-dimensional lattice with an arbitrary finite number of interacting neighbors is expressed in terms of the principal eigenvalue of a matrix of finite size. The high sparseness of these matrices for any number of interactions makes it possible to perform an effective numerical analysis of the macro characteristics of these models.
@article{DVMG_2019_19_2_a8,
     author = {Yu. N. Kharchenko},
     title = {Solution of one-dimensional lattice gas models},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {245--255},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a8/}
}
TY  - JOUR
AU  - Yu. N. Kharchenko
TI  - Solution of one-dimensional lattice gas models
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2019
SP  - 245
EP  - 255
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a8/
LA  - ru
ID  - DVMG_2019_19_2_a8
ER  - 
%0 Journal Article
%A Yu. N. Kharchenko
%T Solution of one-dimensional lattice gas models
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2019
%P 245-255
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a8/
%G ru
%F DVMG_2019_19_2_a8
Yu. N. Kharchenko. Solution of one-dimensional lattice gas models. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 245-255. http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a8/