Solution of one-dimensional lattice gas models
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 245-255
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper it is shown that the thermodynamic limit of the partition function of the statistical models under
consideration on a one-dimensional lattice with an arbitrary finite number of interacting neighbors is expressed in
terms of the principal eigenvalue of a matrix of finite size. The high sparseness of these matrices for any number of
interactions makes it possible to perform an effective numerical analysis of the macro characteristics of these models.
@article{DVMG_2019_19_2_a8,
author = {Yu. N. Kharchenko},
title = {Solution of one-dimensional lattice gas models},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {245--255},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a8/}
}
Yu. N. Kharchenko. Solution of one-dimensional lattice gas models. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 245-255. http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a8/