Solution of functional equations related to elliptic functions. III
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 197-205
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $s,m\in {\Bbb N}$, $s\ge 2$. We solve the functional equation
$$
f_1(x_1+z)\ldots f_{s-1}(x_{s-1}+z)f_s(x_1+\ldots +x_{s-1}-z) =
\sum_{j=1}^{m} \varphi_j(x_1,\ldots,x_{s-1})\psi_j(z),
$$
for unknown entire functions $f_1,\ldots,f_s:{\Bbb C}\to {\Bbb C}$, $\varphi_j: {\Bbb C}^{s-1}\to {\Bbb C}$, $\psi_j: {\Bbb C}\to {\Bbb C}$ in the case of
$s\ge 3$, $m\le 2s-1$. All non-elementary solutions are described by the Weierstrass sigma-function.
Previously, such results were known for $m\le s+1$.
The considered equation arises in the study of polylinear functional-differential operators and multidimensional vector addition theorems.
@article{DVMG_2019_19_2_a4,
author = {A. A. Illarionov and N. V. Markova},
title = {Solution of functional equations related to elliptic functions. {III}},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {197--205},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a4/}
}
TY - JOUR AU - A. A. Illarionov AU - N. V. Markova TI - Solution of functional equations related to elliptic functions. III JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2019 SP - 197 EP - 205 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a4/ LA - ru ID - DVMG_2019_19_2_a4 ER -
A. A. Illarionov; N. V. Markova. Solution of functional equations related to elliptic functions. III. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 197-205. http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a4/