Solution of functional equations related to elliptic functions. III
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 197-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $s,m\in {\Bbb N}$, $s\ge 2$. We solve the functional equation $$ f_1(x_1+z)\ldots f_{s-1}(x_{s-1}+z)f_s(x_1+\ldots +x_{s-1}-z) = \sum_{j=1}^{m} \varphi_j(x_1,\ldots,x_{s-1})\psi_j(z), $$ for unknown entire functions $f_1,\ldots,f_s:{\Bbb C}\to {\Bbb C}$, $\varphi_j: {\Bbb C}^{s-1}\to {\Bbb C}$, $\psi_j: {\Bbb C}\to {\Bbb C}$ in the case of $s\ge 3$, $m\le 2s-1$. All non-elementary solutions are described by the Weierstrass sigma-function. Previously, such results were known for $m\le s+1$. The considered equation arises in the study of polylinear functional-differential operators and multidimensional vector addition theorems.
@article{DVMG_2019_19_2_a4,
     author = {A. A. Illarionov and N. V. Markova},
     title = {Solution of functional equations related to elliptic functions. {III}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {197--205},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a4/}
}
TY  - JOUR
AU  - A. A. Illarionov
AU  - N. V. Markova
TI  - Solution of functional equations related to elliptic functions. III
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2019
SP  - 197
EP  - 205
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a4/
LA  - ru
ID  - DVMG_2019_19_2_a4
ER  - 
%0 Journal Article
%A A. A. Illarionov
%A N. V. Markova
%T Solution of functional equations related to elliptic functions. III
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2019
%P 197-205
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a4/
%G ru
%F DVMG_2019_19_2_a4
A. A. Illarionov; N. V. Markova. Solution of functional equations related to elliptic functions. III. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 197-205. http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a4/

[1] V. M. Bukhshtaber, D. V. Leikin, “Trilineinye funktsionalnye uravneniya”, UMN, 60:2 (2005), 151–152 | DOI | MR | Zbl

[2] V. M. Bukhshtaber, D. V. Leikin, “Zakony slzheniya na yakobianakh ploskikh algebraicheskikh krivykh”, Tr. MIAN, 251 (2005), 54–126 | Zbl

[3] V. M. Bukhshtaber, I. M. Krichever, “Integriruemye uravneniya, teoremy slozheniya i problema Rimana-Shottki”, UMN, 61:1 (2006), 25–84 | DOI | MR | Zbl

[4] R. Rochberg, L. Rubel, “A Functional Equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl

[5] M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:1 (1994), 591–610 | DOI | MR | Zbl

[6] M. Bonk, “The Characterization of Theta Functions by Functional Equations”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55 | DOI | MR | Zbl

[7] M. Bonk, “The addition formula for theta function”, Aequationes Math., 53:1–2 (1997), 54–72 | DOI | MR | Zbl

[8] V. A. Bykovskii, “Giperkvazimnogochleny i ikh prilozheniya”, Funkts. analiz i ego pril., 50:3 (2016), 34–46 | DOI | MR | Zbl

[9] A. A. Illarionov, “Funktsionalnoe uravnenie i sigma-funktsiya Veiershtrassa”, Funkts. analiz i ego pril., 50:4 (2016), 43–54 | DOI | MR | Zbl

[10] A. A. Illarionov, “Reshenie funktsionalnykh uravnenii, svyazannykh s ellipticheskimi funktsiyami”, Analiticheskaya teoriya chisel, Sbornik statei. K 80-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, Tr. MIAN, 299, 2017, 105–117 | DOI | Zbl

[11] A. A. Illarionov, M. A. Romanov, “Giperkvazimnogochleny dlya teta-funktsii”, Funkts. analiz i ego pril., 52:3 (2018), 84–87 | DOI | MR | Zbl

[12] A. A. Illarionov, “O polilineinom funktsionalnom uravnenii”, Matem. zametki, (v pechati)

[13] A. A. Illarionov, “Reshenie funktsionalnykh uravnenii, svyazannykh s ellipticheskimi funktsiyami. II”, Sib. elektron. matem. izv., 16 (2019), 481–492 | Zbl

[14] A. A. Illarionov, “Giperellipticheskie sistemy posledovatelnostei ranga 4”, Matem. sb., 210:9 (2019), 59–88 | DOI | MR | Zbl