Asymmetric cryptography and hyperelliptic sequences
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 185-196

Voir la notice de l'article provenant de la source Math-Net.Ru

We study sequences $\{A_n \}_{n =-\infty}^{+\infty}$ of elements of a field $\mathbb F$ that satisfy decompositions of the form $$ A_{m+n} A_{m-n} = a_1 (m) b_1 (n) + a_2 (m) b_2 (n), $$ where $ a_1, a_2, b_1, b_2: \mathbb Z \to \mathbb F $. The results are used to build analogues of the Diffie – Hellman and El-Gamal algorithms. The discrete logarithm problem is posed in the group $(S, +)$, where the set $S$ consists of fours $S(n) = (A_{n-1},A_n, A_{n+1}, A_{n+2})$, $n\in \mathbb Z$, and $S(n)+S(m) = S(n+m)$.
@article{DVMG_2019_19_2_a3,
     author = {A. A. Illarionov},
     title = {Asymmetric cryptography and hyperelliptic sequences},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {185--196},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a3/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Asymmetric cryptography and hyperelliptic sequences
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2019
SP  - 185
EP  - 196
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a3/
LA  - ru
ID  - DVMG_2019_19_2_a3
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Asymmetric cryptography and hyperelliptic sequences
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2019
%P 185-196
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a3/
%G ru
%F DVMG_2019_19_2_a3
A. A. Illarionov. Asymmetric cryptography and hyperelliptic sequences. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 185-196. http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a3/