Asymmetric cryptography and hyperelliptic sequences
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 185-196
Voir la notice de l'article provenant de la source Math-Net.Ru
We study sequences $\{A_n \}_{n =-\infty}^{+\infty}$ of elements of a field $\mathbb F$ that satisfy decompositions of the form
$$
A_{m+n} A_{m-n} = a_1 (m) b_1 (n) + a_2 (m) b_2 (n),
$$
where $ a_1, a_2, b_1, b_2: \mathbb Z \to \mathbb F $. The results are used to build analogues of the Diffie – Hellman and El-Gamal algorithms.
The discrete logarithm problem is posed in the group $(S, +)$, where
the set $S$ consists of fours $S(n) = (A_{n-1},A_n, A_{n+1}, A_{n+2})$, $n\in \mathbb Z$, and $S(n)+S(m) = S(n+m)$.
@article{DVMG_2019_19_2_a3,
author = {A. A. Illarionov},
title = {Asymmetric cryptography and hyperelliptic sequences},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {185--196},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a3/}
}
A. A. Illarionov. Asymmetric cryptography and hyperelliptic sequences. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 185-196. http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a3/