Asymmetric cryptography and hyperelliptic sequences
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 185-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study sequences $\{A_n \}_{n =-\infty}^{+\infty}$ of elements of a field $\mathbb F$ that satisfy decompositions of the form $$ A_{m+n} A_{m-n} = a_1 (m) b_1 (n) + a_2 (m) b_2 (n), $$ where $ a_1, a_2, b_1, b_2: \mathbb Z \to \mathbb F $. The results are used to build analogues of the Diffie – Hellman and El-Gamal algorithms. The discrete logarithm problem is posed in the group $(S, +)$, where the set $S$ consists of fours $S(n) = (A_{n-1},A_n, A_{n+1}, A_{n+2})$, $n\in \mathbb Z$, and $S(n)+S(m) = S(n+m)$.
@article{DVMG_2019_19_2_a3,
     author = {A. A. Illarionov},
     title = {Asymmetric cryptography and hyperelliptic sequences},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {185--196},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a3/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Asymmetric cryptography and hyperelliptic sequences
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2019
SP  - 185
EP  - 196
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a3/
LA  - ru
ID  - DVMG_2019_19_2_a3
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Asymmetric cryptography and hyperelliptic sequences
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2019
%P 185-196
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a3/
%G ru
%F DVMG_2019_19_2_a3
A. A. Illarionov. Asymmetric cryptography and hyperelliptic sequences. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 185-196. http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a3/

[1] Richard Schroeppel, Hilarie Orman, R. Wm. Gosper, 2017 https://www.osti.gov/servlets/purl/1483215

[2] V. A. Bykovskii, “Giperkvazimnogochleny i ikh prilozheniya”, Funkts. analiz i ego prilozheniya, 50:3 (2016), 34–46 | DOI | MR | Zbl

[3] A. A. Illarionov, “Giperellipticheskie sistemy posledovatelnostei ranga 4”, Matem. sb., 210:9 (2019), 59–88 | DOI | MR | Zbl

[4] A. A. Illarionov, “Funktsionalnoe uravnenie i sigma-funktsiya Veiershtrassa”, Funkts. analiz i ego prilozheniya, 50:4 (2016), 43–54 | DOI | MR | Zbl

[5] A. V. Ustinov, “Elementarnyi podkhod k izucheniyu posledovatelnostei Somosa”, Algebraicheskaya topologiya, kombinatorika i matematicheskaya fizika, Sbornik statei. K 75-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Viktora Matveevicha Bukhshtabera, v. 305, Tr. MIAN, MAIK, M., 2019

[6] S. Fomin, A. Zelevinsky, “The Laurent Phenomenon”, Adv. Appl. Math., 28 (2002), 119–144 | DOI | MR | Zbl

[7] A. N. Hone, C. Swart, “Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences”, Math. Proc. Camb. Philos. Soc., 145:1 (2008), 65–85 | DOI | MR | Zbl

[8] A. N. Hone, “Analytic solutions and integrability for bilinear recurrences of order six”, Applicable Analysis: An International Journal, 89:4 (2010), 473–492 | DOI | MR | Zbl

[9] V. A. Bykovskii, A. V. Ustinov, “O loranovosti posledovatelnostei Somos-4 i Somos-5”, Funkts. analiz i ego pril., 53:3 (2019), 79-–83 | DOI | MR

[10] A. A. Illarionov, “O posledovatelnosti Somos-4”, Dalnevost. matem. zhurn., 18:2 (2018), 183–-188 | MR | Zbl

[11] A. A. Illarionov, “Reshenie funktsionalnykh uravnenii, svyazannykh s ellipticheskimi funktsiyami”, Analiticheskaya teoriya chisel, Sbornik statei. K 80-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, Tr. MIAN, 299, 2017, 105–117 | DOI | Zbl