The variety of generalizations of the Ptolemy's theorem
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 129-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article examines the metric properties of a tetron. In particular case a tetron is a triangle, flat or spatial quadrangle, and also a tetrahedron. The main theorem is proved about the connection of the lengths of the sides, the magnitudes of the plane angles and the magnitude of the dihedral angle of the tetron is proved. Many remarkable theorems about triangles, quadrangles, and tetrahedra are the corollaries of this theorem. Special attention given to equihedral tetrahedra.
@article{DVMG_2019_19_2_a0,
     author = {N. S. Astapov and I. S. Astapov},
     title = {The variety of generalizations of the {Ptolemy's} theorem},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {129--137},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a0/}
}
TY  - JOUR
AU  - N. S. Astapov
AU  - I. S. Astapov
TI  - The variety of generalizations of the Ptolemy's theorem
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2019
SP  - 129
EP  - 137
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a0/
LA  - ru
ID  - DVMG_2019_19_2_a0
ER  - 
%0 Journal Article
%A N. S. Astapov
%A I. S. Astapov
%T The variety of generalizations of the Ptolemy's theorem
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2019
%P 129-137
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a0/
%G ru
%F DVMG_2019_19_2_a0
N. S. Astapov; I. S. Astapov. The variety of generalizations of the Ptolemy's theorem. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 129-137. http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a0/

[1] G. S. M. Kokster, S. L. Greittser, Novye vstrechi s geometriei, Nauka, M., 1978

[2] V. V. Prasolov, Zadachi po planimetrii, Ch. II, Nauka, M., 1986 | MR

[3] V. V. Prasolov, Zadachi i teoremy lineinoi algebry, Nauka, Fizmatlit, M., 1996

[4] N. S. Astapov, A. V. Zhukov, “Zamechatelnyi chetyrekhvershinnik”, Kvant, 1 (1996), 45–47

[5] D. O. Shklyarskii, N. N. Chentsov, I. M. Yaglom, Izbrannye zadachi i teoremy planimetrii, Nauka, M., 1967

[6] I. Ya. Bakelman, Inversiya, Nauka, M., 1966

[7] N. S. Astapov, “Teorema o chetyrekhvershinnike”, Matematicheskoe obrazovanie, 2 (2000), 22–28

[8] N. S. Astapov, N. C. Noland, “The Remarkable Tetron”, American Mathematical Monthly, 108:4 (2001), 368–370 | DOI | MR | Zbl

[9] S. Strashevich, E. Brovkin, Polskie matematicheskie olimpiady, Mir, M., 1978 | MR

[10] V. V. Prasolov, I. F. Sharygin, Zadachi po stereometrii, Nauka, Fizmatlit, M., 1989 | MR

[11] G. Shteingauz, Sto zadach, Nauka, Fizmatlit, M., 1976 | MR

[12] I. M. Yaglom, Geometricheskie preobrazovaniya, v. II, Gos. izd-vo tekhn.-teoret. literatury, M., 1956 | MR

[13] D. Efremov, Novaya geometriya treugolnika, Tipografiya M. Shpentsera, Odessa, 1902

[14] Elementy matematiki v zadachakh. Cherez olimpiady i kruzhki — k professii, ed. A. A. Zaslavskogo, A. B. Skopenkova i M. B. Skopenkova, MTsNMO, M., 2018

[15] Shay Gueron, “Two Applications of the Generalized Ptolemy Theorem”, American Mathematical Monthly, 109:4 (2002), 362–370 | DOI | MR | Zbl