Internal inverse problem of complex magnetic potential
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 75-83
Cet article a éte moissonné depuis la source Math-Net.Ru
The article is dedicated to definition of an area by its internal complex magnetic potential. The problem to find an area which is close to given is reduced to solution of conjugation problem which linear part has first-order derivative. Proven solvability of the problem "in the small".
@article{DVMG_2019_19_1_a8,
author = {P. B. Sulyandziga and A. N. Ivanov and E. P. Sulyandziga},
title = {Internal inverse problem of complex magnetic potential},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {75--83},
year = {2019},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a8/}
}
TY - JOUR AU - P. B. Sulyandziga AU - A. N. Ivanov AU - E. P. Sulyandziga TI - Internal inverse problem of complex magnetic potential JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2019 SP - 75 EP - 83 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a8/ LA - ru ID - DVMG_2019_19_1_a8 ER -
P. B. Sulyandziga; A. N. Ivanov; E. P. Sulyandziga. Internal inverse problem of complex magnetic potential. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 75-83. http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a8/
[1] A. I. Prilepko, “Obratnye zadachi obobschennykh magnitnykh potentsialov”, Differents. uravneniya, 6:1 (1970), 27–38 | MR | Zbl
[2] V. G. Cherednichenko, “O razreshimosti vnutrennei obratnoi zadachi logarifmicheskogo potentsiala”, Differents. uravneniya, 10:1 (1974), 153–158 | MR | Zbl
[3] W. Lowrie, Fundamentals of geophysics, Cambridge University Press, Cambridge, 2007
[4] V. K. Ivanov, Izbrannye nauchnye trudy. Matematika, Fizmatlit, M., 2008
[5] P. B. Sulyandziga, “O ploskoi obratnoi zadache magnitnogo potentsiala”, Differents. uravneniya, 13:3 (1977), 529–537 | MR | Zbl
[6] N. P. Vekua, Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970