Presheaves of sets and actions of semigroups
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 63-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some theorems on homomorphisms of presheaves of sets are proved. The results are applied to sets with action of semigroup.
@article{DVMG_2019_19_1_a7,
     author = {E. E. Skurikhin},
     title = {Presheaves of sets and actions of semigroups},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a7/}
}
TY  - JOUR
AU  - E. E. Skurikhin
TI  - Presheaves of sets and actions of semigroups
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2019
SP  - 63
EP  - 74
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a7/
LA  - ru
ID  - DVMG_2019_19_1_a7
ER  - 
%0 Journal Article
%A E. E. Skurikhin
%T Presheaves of sets and actions of semigroups
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2019
%P 63-74
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a7/
%G ru
%F DVMG_2019_19_1_a7
E. E. Skurikhin. Presheaves of sets and actions of semigroups. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 63-74. http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a7/

[1] A. Grothendieck (with M. Artin and J.-L. Verdier), Seminaire Geometrie Algebrique 4 [SGA4], Theorie de topos et cohomologie etale de schemas, Lect. Notes in Math., v. 269, 270, Springer, Heidelberg, 1972 | MR

[2] E. E. Skurikhin, “Kategornye topologicheskie prostranstva i razmernosti”, Dalnevostochnyi matematicheskii zhurnal, 8:1 (2008), 98–111 | MR

[3] E. E. Skurikhin, Topologii Grotendika i puchki na uporyadochennykh mnozhestvakh, Dissertatsiya na soiskanie uchenoi stepeni doktora fiz-mat. nauk, Vladivostok, 2003 | Zbl

[4] E. E. Skurikhin, “Polugruppy endomorfizmov kategornykh topologicheskikh prostranstv”, Dni geometrii v Novosibirske - 2018, Tezisy Mezhdunarodnoi konferentsii, Institut matematiki im. S. L. Soboleva SO RAN, Novosibirsk, 2018, 70–71

[5] U. Massi, Dzh. Stollings, Algebraicheskaya topologiya. Vvedenie., Mir, Moskva, 1977