Circular symmetrization and Green function
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 24-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behaviour of the Green function under the circular symmetrization of a domain on the Riemann surface.
@article{DVMG_2019_19_1_a4,
     author = {V. N. Dubinin},
     title = {Circular symmetrization and {Green} function},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {24--30},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Circular symmetrization and Green function
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2019
SP  - 24
EP  - 30
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a4/
LA  - ru
ID  - DVMG_2019_19_1_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Circular symmetrization and Green function
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2019
%P 24-30
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a4/
%G ru
%F DVMG_2019_19_1_a4
V. N. Dubinin. Circular symmetrization and Green function. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 24-30. http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a4/

[1] J. Krzyz, “Circular symmetrization and Green’s function”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 7 (1959), 327–330 | MR | Zbl

[2] A. Baernstein, “Integral means, univalent functions and circular symmetrization”, Acta math., 133:3-4 (1974), 139–169 | DOI | MR

[3] A. Baernstein, B. A. Taylor, “Spherical rearrangements, subharmonic functions, and *-functions in n-space”, Duke Math. J., 43 (1976), 245–268 | DOI | MR | Zbl

[4] M. Essen , D. Shea, “On some questions of uniqueness in the theory of symmetrization”, Ann. Acad. Sci. Rain. Ser. A I Math., 4 (1978/1979), 311–340 | MR

[5] A. Weitsman, “Symmetrization and the Poincari metric”, Ann. of Math., 124:2 (1986), 159–169 | DOI | MR | Zbl

[6] A. Fryntov, “Extremal properties of Green functions and A. Weitsman’s conjecture”, Trans. Amer. Math. Soc., 345:2 (1994), 511–525 | MR | Zbl

[7] A. Yu. Solynin, “Polyarizatsiya i funktsionalnye neravenstva”, Algebra i analiz, 8:6 (1996), 148–185 | Zbl

[8] V. N. Dubinin, “Simmetrizatsiya, funktsiya Grina i konformnye otobrazheniya”, Zap. nauchn. sem. POMI, 226 (1996), 80–-92

[9] V. N. Dubinin, “Novaya versiya krugovoi simmetrizatsii s prilozheniyami k p-listnym funktsiyam”, Matem. sb., 203:7 (2012), 79–-94 | DOI | MR | Zbl

[10] V. N. Dubinin, “Krugovaya simmetrizatsiya kondensatorov na rimanovykh poverkhnostyakh”, Matem. sb., 206:1 (2015), 69–-96 | DOI | MR | Zbl

[11] V. N. Dubinin, “Four-point distortion theorem for complex polynomials”, Complex Variables and Elliptic Equations, 59:1 (2014), 59–-66 | DOI | MR | Zbl

[12] V. N. Dubinin, V. Y. Kim, “Covering theorem for p-valent functions with Montel's normalization”, Journal of Mathematical Analysis and Applications, 428:1 (2015), 502–507 | DOI | MR | Zbl

[13] V. N. Dubinin, “O logarifmicheskoi energii nulei i polyusov ratsionalnoi funktsii”, Sib. matem. zhurn., 57:6 (2016), 1255–-1261 | MR | Zbl

[14] V. N. Dubinin, “Poyas lemniskat i teoremy iskazheniya dlya mnogolistnykh funktsii. II”, Matem. zametki, 104:5 (2018), 700–-707 | DOI | MR | Zbl

[15] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966

[16] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Springer, Basel: Birkhauser, 2014, xii+344 pp. | MR | Zbl