Unique solvability of boundary value problem for a polychromatic radiation transfer equation
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 96-107
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with a boundary value problem for a radiation transfer equation. It's assumed that Compton scattering is predominant effect in media. The boundary value problem is reduced to an integral equation of Volterra type. The result of the work is the theorem provides existence and uniqueness of solution for the boundary value problem of the radiative transfer equation.
@article{DVMG_2019_19_1_a11,
author = {I. P. Yarovenko},
title = {Unique solvability of boundary value problem for a polychromatic radiation transfer equation},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {96--107},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a11/}
}
TY - JOUR AU - I. P. Yarovenko TI - Unique solvability of boundary value problem for a polychromatic radiation transfer equation JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2019 SP - 96 EP - 107 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a11/ LA - ru ID - DVMG_2019_19_1_a11 ER -
I. P. Yarovenko. Unique solvability of boundary value problem for a polychromatic radiation transfer equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 96-107. http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a11/