Determination of a diffuse reflecting surface under pulsed irradiation
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 206-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse problem of determining a diffusely reflecting surface under given functionals of the radiation flux density for a nonstationary radiation transfer equation is considered. Assuming the point pulsed source and the single scattering approximation, authors obtained the nonlinear differential equation. The solution has been obtained in a few quadratures to determine the profile of the Lambert surface. The computational experiments were carried out on test examples.
@article{DVMG_2018_18_2_a7,
     author = {V. A. Kan and I. V. Prokhorov},
     title = {Determination of a diffuse reflecting surface under pulsed irradiation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {206--215},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a7/}
}
TY  - JOUR
AU  - V. A. Kan
AU  - I. V. Prokhorov
TI  - Determination of a diffuse reflecting surface under pulsed irradiation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 206
EP  - 215
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a7/
LA  - ru
ID  - DVMG_2018_18_2_a7
ER  - 
%0 Journal Article
%A V. A. Kan
%A I. V. Prokhorov
%T Determination of a diffuse reflecting surface under pulsed irradiation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 206-215
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a7/
%G ru
%F DVMG_2018_18_2_a7
V. A. Kan; I. V. Prokhorov. Determination of a diffuse reflecting surface under pulsed irradiation. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 206-215. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a7/

[1] V. R. Kireitov, Obratnye zadachi fotometrii, VTs SO AN SSSR, Novosibirsk, 1983

[2] R. D. Urik, Osnovy gidroakustiki, Sudostroenie, L., 1978

[3] A. V. Bogorodskii, G. V. Yakovlev, E. A. Korepin, A. K. Dolzhikov, Gidroakusticheskaya tekhnika issledovaniya i osvoeniya okeana, Gidrometeoizdat, L., 1984

[4] D. S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[5] Yu. E. Anikonov, Inverse Problems for Kinetic and Other Evolution Equations, VSP, Utrecht, 2001 | MR

[6] V. V. Tuchin, Optika biologicheskikh tkanei. Metody rasseyaniya sveta v meditsinskoi diagnostike, Fizmatlit, M., 2013

[7] I. V. Prokhorov, V. V. Zolotarev, I. B. Agafonov, “Zadacha akusticheskogo zondirovaniya vo fluktuiruyuschem okeane”, Dalnevostochnyi matematicheskii zhurnal, 11:1 (2011), 76–87 | MR | Zbl

[8] I. V. Prokhorov, A. A. Suschenko, “Issledovanie zadachi akusticheskogo zondirovaniya morskogo dna metodami teorii perenosa izlucheniya”, Akusticheskii zhurnal, 61:3 (2015), 400–408 | DOI

[9] I. V. Prokhorov, A. A. Suschenko, V. A. Kan, “Ob odnoi zadache opredeleniya relefa dna fluktuiruyuschego okeana”, Sib. zhurn. industr. matem., 18:2 (2015), 99–110 | MR | Zbl

[10] V. A. Kan, I. V. Prokhorov, A. A. Sushchenko, “Determining the bottom surface according to data of side-scan sonars”, Proceedings of SPIE - The International Society for Optical Engineering, 10035 (2016), 1003518

[11] V. A. Sharafutdinov, “O vosstanovlenii lambertovskoi opticheskoi krivoi po dvum ee izobrazheniyam”, Doklady AN, 249:3 (1979), 565–568 | MR | Zbl

[12] I. V. Prokhorov, A. A. Suschenko, “O korrektnosti zadachi Koshi dlya uravneniya perenosa izlucheniya s frenelevskimi usloviyami sopryazheniya”, Sibirskii matematicheskii zhurnal, 56:4 (2015), 922–933 | MR | Zbl

[13] I. V. Prokhorov, A. A. Suschenko, A. Kim, “Nachalno-kraevaya zadacha dlya uravneniya perenosa izlucheniya s diffuznymi usloviyami sopryazheniya”, Sibirskii zhurnal industrialnoi matematiki, 20:1 (2017), 75—85 | Zbl

[14] I. V. Prokhorov, A. A. Suschenko, “Zadacha Koshi dlya uravneniya perenosa izlucheniya v neogranichennoi srede”, Dalnevostochnyi matematicheskii zhurnal, 18:1 (2018), 101—111 | MR

[15] A. A. Amosov, “Initial-Boundary Value Problem for the Non-Stationary Radiative Transfer Equation with Fresnel Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 231:3 (2018), 279–337 | DOI | MR | Zbl

[16] A. A. Amosov, “Initial-Boundary Value Problem for the Nonstationary Radiative Transfer Equation with Diffuse Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 235:2 (2018), 117–137 | DOI | MR | Zbl

[17] V. Lekomtsev, “Gidroakusticheskie sredstva vizualizatsii dlya neobitaemykh podvodnykh apparatov”, Sovremennye tekhnologii avtomatizatsii, 2013, no. 3, 78–82