On the Somos-4 sequence
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 183-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2005 A.N.W. Hone has obtained an explicit formula for Somos-4 sequences in terms of the Weierstrass sigma function. The proof is valid only for sequences without zero terms. We prove that arbitrary sequence satisfying the Somos-4 equation is determined by the same formula iff it satisfies some determinant identity (analogue of the formula of addition). We give examples of sequences that satisfy the Somos-4 equation but do not satisfy the determinant identity.
@article{DVMG_2018_18_2_a4,
     author = {A. A. Illarionov},
     title = {On the {Somos-4} sequence},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {183--188},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a4/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - On the Somos-4 sequence
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 183
EP  - 188
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a4/
LA  - ru
ID  - DVMG_2018_18_2_a4
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T On the Somos-4 sequence
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 183-188
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a4/
%G ru
%F DVMG_2018_18_2_a4
A. A. Illarionov. On the Somos-4 sequence. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 183-188. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a4/

[1] M. Ward, “Memoir on elliptic divisibility sequences”, Amer. J. Math., 70 (1948), 31–74 | DOI | MR | Zbl

[2] R. M. Robinson, “Periodicity of Somos sequences”, Proc. AMS, 116:3 (1992), 613–619 | DOI | MR | Zbl

[3] R. Shipsey, Elliptic Divisibility Sequences, PhD Thesis, L.: Univ. London, 2000

[4] C. S. Swart, Elliptic curves and related sequences, PhD Thesis, L.: Royal Holloway, Univ. London, 2003

[5] A. N. W. Hone, “Elliptic curves and quadratic reccurence sequences”, Bull. Lond. Math. Soc., 37 (2005), 161-171 | DOI | MR | Zbl

[6] A. J. van der Poorten, “Hyperelliptic curves, continued fractions, and Somos sequences”, Dynamics $\$ Stochastics, Lecture Notes–Monograph Series, v. 48, ed. Denteneer, Dee and Hollander, Frank den and Verbitskiy, Evgeny, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2006, 212–224 | MR | Zbl

[7] A. J. van der Poorten, C. S. Swart, “Recurrence relations for elliptic sequences: every Somos 4 is a Somos $k$”, Bull. Lond. Math. Soc., 38:4 (2006), 546–554 | DOI | MR | Zbl

[8] A. N. W. Hone, “Sigma function solution of the initial value problem for Somos 5 sequences”, Trans. AMS, 359:10 (2007), 5019-5034 | DOI | MR | Zbl

[9] A. N. Hone, C. Swart, “Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences”, Math. Proc. Camb. Philos. Soc., 145:1 (2008), 65–85 | DOI | MR | Zbl

[10] A. N. Hone, “Analytic solutions and integrability for bilinear recurrences of order six”, Applicable Analysis: An International Journal, 89:4 (2010), 473–492 | DOI | MR | Zbl

[11] X.Ma, “Magic determinants of Somos sequences and theta functions”, Discrete Math., 210:1 (2010), 1–5 | MR

[12] Y. Fedorov, A. N. Hone, “Sigma-function solution to the general Somos-6 recurrence via hyperelliptic Prym varieties”, Journal of Integrable Systems, 1:1 (2016) | DOI

[13] V. A. Bykovskii, A. V. Ustinov, “Somos-4 i ellipticheskie sistemy posledovatelnostei”, DAN, 471:1 (2016), 7–10 | Zbl

[14] V. A. Bykovskii, “Giperkvazimnogochleny i ikh prilozheniya”, Funkts. analiz i ego prilozheniya, 50:3 (2016), 34–46 | DOI | MR | Zbl

[15] A. A. Illarionov, “Funktsionalnoe uravnenie i sigma-funktsiya Veiershtrassa”, Funkts. analiz i ego prilozheniya, 50:4 (2016), 43–54 | DOI | MR | Zbl