Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2018_18_2_a13, author = {G. Sh. Tsitsiashvili}, title = {Invariant properties of queuing systems with multiple flows}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {267--270}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a13/} }
G. Sh. Tsitsiashvili. Invariant properties of queuing systems with multiple flows. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 267-270. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a13/
[1] P. J. Burke, “The output of a queuing system”, Operations Research, 4 (1956), 699–704 | DOI | MR
[2] B. V. Gnedenko, I. N. Kovalenko, Vvedenie v teoriyu massovogo obsluzhivaniya, Nauka, Moskva, 1966
[3] N. P. Buslenko, Modelirovanie slozhnykh sistem, Nauka, Moskva, 1968
[4] G. Sh. Tsitsiashvili, M. A. Osipova, “Generalization and Extension of Burke Theorem”, Reliability: Theory and Applications, 2018, no. 1, 59–62
[5] A. Ya. Khinchin, Raboty po matematicheskoi teorii massovogo obsluzhivaniya, Nauka, Moskva, 1963
[6] G. Sh. Tsitsiashvili, “Ergodicity and invariance of flows in queuing systems”, Journal of Applied Mathematics and Physics, 6:7 (2018) | DOI
[7] D. Shtoiyan, Kachestvennye svoistva i otsenki stokhasticheskikh modelei, Mir, Moskva, 1979
[8] G. P. Klimov, “Ergodicheskaya teorema dlya regeneriruyuschikh protsessov”, Teoriya veroyatnostei i ee primeneniya, 21:2 (1976), 402–405 | MR | Zbl
[9] V. I. Tikhonov, M. A. Mironov, Markovskie protsessy, Sovetskoe radio, Moskva, 1977 | MR