Invariant properties of queuing systems with multiple flows
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 267-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in a single-server queuing system with exponentially distributed service time and intervals between the arrivals of customers, the stationary output flows coincide in distribution with independent Poisson input flows, provided that the server works if there are customers in the system.
@article{DVMG_2018_18_2_a13,
     author = {G. Sh. Tsitsiashvili},
     title = {Invariant properties of queuing systems with multiple flows},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {267--270},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a13/}
}
TY  - JOUR
AU  - G. Sh. Tsitsiashvili
TI  - Invariant properties of queuing systems with multiple flows
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 267
EP  - 270
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a13/
LA  - ru
ID  - DVMG_2018_18_2_a13
ER  - 
%0 Journal Article
%A G. Sh. Tsitsiashvili
%T Invariant properties of queuing systems with multiple flows
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 267-270
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a13/
%G ru
%F DVMG_2018_18_2_a13
G. Sh. Tsitsiashvili. Invariant properties of queuing systems with multiple flows. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 267-270. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a13/

[1] P. J. Burke, “The output of a queuing system”, Operations Research, 4 (1956), 699–704 | DOI | MR

[2] B. V. Gnedenko, I. N. Kovalenko, Vvedenie v teoriyu massovogo obsluzhivaniya, Nauka, Moskva, 1966

[3] N. P. Buslenko, Modelirovanie slozhnykh sistem, Nauka, Moskva, 1968

[4] G. Sh. Tsitsiashvili, M. A. Osipova, “Generalization and Extension of Burke Theorem”, Reliability: Theory and Applications, 2018, no. 1, 59–62

[5] A. Ya. Khinchin, Raboty po matematicheskoi teorii massovogo obsluzhivaniya, Nauka, Moskva, 1963

[6] G. Sh. Tsitsiashvili, “Ergodicity and invariance of flows in queuing systems”, Journal of Applied Mathematics and Physics, 6:7 (2018) | DOI

[7] D. Shtoiyan, Kachestvennye svoistva i otsenki stokhasticheskikh modelei, Mir, Moskva, 1979

[8] G. P. Klimov, “Ergodicheskaya teorema dlya regeneriruyuschikh protsessov”, Teoriya veroyatnostei i ee primeneniya, 21:2 (1976), 402–405 | MR | Zbl

[9] V. I. Tikhonov, M. A. Mironov, Markovskie protsessy, Sovetskoe radio, Moskva, 1977 | MR