Viscoplastic flow in a rotating hollow cylinder
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 242-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

The strains and stresses in a rotating hollow cylinder are investigated. Problem is studied using infinitesimal strain theory, Hooke's law, modified von Mises yield criterion and the flow rule associated with it. The exact steady solution is obtained. Nonsteady problem is solved by numerical algorithm based on finite difference method. The results of computations are presented by plots of the stresses, displacements and strains.
@article{DVMG_2018_18_2_a12,
     author = {A. N. Prokudin and S. V. Firsov},
     title = {Viscoplastic flow in a rotating hollow cylinder},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {242--260},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a12/}
}
TY  - JOUR
AU  - A. N. Prokudin
AU  - S. V. Firsov
TI  - Viscoplastic flow in a rotating hollow cylinder
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 242
EP  - 260
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a12/
LA  - ru
ID  - DVMG_2018_18_2_a12
ER  - 
%0 Journal Article
%A A. N. Prokudin
%A S. V. Firsov
%T Viscoplastic flow in a rotating hollow cylinder
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 242-260
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a12/
%G ru
%F DVMG_2018_18_2_a12
A. N. Prokudin; S. V. Firsov. Viscoplastic flow in a rotating hollow cylinder. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 242-260. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a12/

[1] A. Nadai, Plastichnost i razrushenie tverdykh tel, v. 1, Izdatelstvo inostrannoi literatury, M., 1954

[2] P. G. Hodge Jr., M. Balaban, “Elastic—plastic analysis of a rotating cylinder”, International Journal of Mechanical Sciences, 4:6 (1962), 465–476 | DOI

[3] U. Gamer, M. Sayir, “Elastic-plastic stress distribution in a rotating solid shaft”, Zeitschrift für angewandte Mathematik und Physik ZAMP, 35:5 (1984), 601–617 | DOI | Zbl

[4] U. Gamer, W. Mack, I. Varga, “Rotating elastic-plastic solid shaft with fixed ends”, International Journal of Engineering Science, 35:3 (1997), 253–267 | DOI | Zbl

[5] A. N. Eraslan, “On the linearly hardening rotating solid shaft”, European Journal of Mechanics - A/Solids, 22:2 (2003), 295–307 | DOI | Zbl

[6] U. Gamer, R. H. Lance, “Stress distribution in a rotating elastic-plastic tube”, Acta Mechanica, 50:1–2 (1983), 1–8 | DOI | Zbl

[7] W. Mack, “Rotating elastic-plastic tube with free ends”, International Journal of Solids and Structures, 27:11 (1991), 1461–1476 | DOI | Zbl

[8] A. N. Eraslan, “Von {Mises}’ yield criterion and nonlinearly hardening rotating shafts”, Acta Mechanica, 168:3–4 (2004), 129–144 | DOI | Zbl

[9] E. Arslan, W. Mack, A. N. Eraslan, “The rotating elastic-plastic hollow shaft conveying a hot medium”, Forschung im Ingenieurwesen, 74:1 (2010), 27–39 | DOI

[10] H. Xiao, O. T. Bruhns, A. Meyers, “Elastoplasticity beyond small deformations”, Acta Mechanica, 182:1–2 (2006), 31–111 | DOI | Zbl

[11] A. A. Burenin, L. V. Kovtanyuk, Bolshie neobratimye deformatsii i uprugoe posledeistvie, Dalnauka, Vladivostok, 2013