Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2018_18_2_a0, author = {A. A. Burenin and V. Kaing and A. V. Tkacheva}, title = {To the calculation of plane stressed states of the theory of unsteady temperature stresses in elastoplastic bodies}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {131--146}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a0/} }
TY - JOUR AU - A. A. Burenin AU - V. Kaing AU - A. V. Tkacheva TI - To the calculation of plane stressed states of the theory of unsteady temperature stresses in elastoplastic bodies JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2018 SP - 131 EP - 146 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a0/ LA - ru ID - DVMG_2018_18_2_a0 ER -
%0 Journal Article %A A. A. Burenin %A V. Kaing %A A. V. Tkacheva %T To the calculation of plane stressed states of the theory of unsteady temperature stresses in elastoplastic bodies %J Dalʹnevostočnyj matematičeskij žurnal %D 2018 %P 131-146 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a0/ %G ru %F DVMG_2018_18_2_a0
A. A. Burenin; V. Kaing; A. V. Tkacheva. To the calculation of plane stressed states of the theory of unsteady temperature stresses in elastoplastic bodies. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 131-146. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a0/
[1] B. Boli, Dzh. Ueiner, Teoriya temperaturnykh napryazhenii, Mir, M., 1964
[2] G. Parkus, Neustanovivshiesya temperaturnye naryazheniya, Mir, M., 1969
[3] P. Perzyna, A. Sawezuk, “Problems of thermoplasticity”, Nuclear engineering and design., 1979, 94–201, North-Holland Publ. Co.
[4] Yu.N. Shevchenko, Termoplastichnost pri peremennykh nagruzheniyakh, Nukova dumka, Kiev, 1970
[5] A. A. Pozdeev, Yu. I. Nyashin, P. V. Trusov, Ostatochnye napryazheniya: teoriya i prilozheniya, Nauka, M., 1982
[6] A. A. Burenin, L. V. Kovtanyuk, Bolshie neobratimye deformatsii i uprugoe posledeistvie, Dalnauka, Vladivostok, 2013
[7] J. L. Chaboche, “Thermodynamically based viscoplastic constitutive equation: theory versus experiment”, ASME Winter Annual Meeting, 1991, 1–20, Atlanta
[8] N. Ohno, J. Wang, “Transformation of a nonlinear kinematic hardening rule toamultisurface formunder isothermal and nonisothermal conditions”, Int. J. Plasticity., 7 (1992), 879–891 | DOI
[9] L. V. Kovtanyuk, “Modelirovanie bolshikh uprugoplasticheskikh deformatsii v neizotermicheskom sluchae”, Dalnevost. mat.zhurnal., 5:1 (2004), 110–120
[10] V. S. Bondar, V. V. Danshin, A. A. Kondratenko, “Variant teorii termoplastichnosti”, Vestnik PNIPU. Seriya «Mekhanika», 2 (2015), 21–35
[11] U. Gamer, “A concise treatment of the shrink fit withelastic plastic hab”, Int. J. Solids. Struct., 29 (1992), 2463–2469 | DOI
[12] W. Mack, “Thermal assembly of an elastic–plastic hub and a solid shaft”, Arch. Appl. Mech., 63 (1993), 42–50 | DOI | Zbl
[13] A. Kovacs, “Residual Stresses in Thermally Loaded Shrink Fits Periodica Polytechnica”, Ser. Mech. Eng., 40:2 (1996), 103–112
[14] S. E. Aleksandrov, N. N. Chikanova, “Uprugoplasticheskoe napryazhenno-deformirovannoe sostoyanie v plastine s zapressovannym vklyucheniem pod deistviem temperaturnogo polya”, Izv. RAN MTT, 2000, no. 4, 149–158
[15] S. E. Aleksandrov, E. V. Lomakin, I.–R. Dzeng, “Reshenie termouprugoplasticheskoi zadachi dlya tonkogo diska iz plasticheski szhimaemogo materiala, podverzhennogo termicheskomu nagruzheniyu”, DAN, 443:3 (2012), 310–312 | MR
[16] S. E. Aleksandrov, E. A. Lyamina, O. V. Novozhilova, “Vliyanie zavisimosti predela tekuchesti ot temperatury na napryazhennoe sostoyanie v tonkom polom diske”, Problemy mashinostroeniya i nadezhnost mashin, 2013, no. 3, 43–48
[17] E. P. Dats, A. V. Tkacheva, R. V. Shport, “Sborka konstruktsii «koltso v koltse» sposobom goryachei posadki”, Vestnik ChGPU im. I. Ya. Yakovleva, seriya: mekhanika predelnogo sostoyaniya, 2014, no. 4(22), 204–213 | MR
[18] E. P. Dats, A. V. Tkacheva, “Tekhnologicheskie temperaturnye napryazheniya v protsessakh goryachei posadki tsilindricheskikh tel pri uchete plasticheskikh techenii”, PMTF, 57:3 (337) (2016), 208–216 | MR | Zbl
[19] A. A. Burenin, A. V. Tkacheva, G. A. Scherbatyuk, “K raschetu neustoyavshikhsya temperaturnykh napryazhenii v uprugoplasticheskikh telakh”, Vychislitelnaya mekhanika sploshnykh sred, 10:3 (2017), 245–259 | MR
[20] E. P. Dats, E. V. Murashkin, A. V. Tkacheva, G. A. Scherbatyuk, “Temperaturnye napryazheniya v uprugoplasticheskoi trube v zavisimosti ot vybora usloviya plastichnosti”, Mekhanika tverdogo tela, 1 (2018), 32–43
[21] Yu. N. Shevchenko, P. A. Steblyanko, A. D. Petrov, “Chislennye metody v nestatsionarnykh zadachakh teorii termoplastichnosti”, Problemy vychislitelnoi mekhaniki i prochnosti konstruktsii, 22 (2014), 250–264
[22] D. R. Bland, “Elastoplastic thick-walled tubes of work-hardening material subject to internal and external pressures and to temperature gradients”, J. of the Mechanics and Physics of Solids, 4 (1956), 209–-229 | DOI | MR | Zbl
[23] A. A. Burenin, L. V. Kovtanyuk, M. V. Polonik, “Vozmozhnost povtornogo plasticheskogo techeniya pri obschei razgruzki uprugoplasticheskoi sredy”, DAN, 375:6 (2000), 767–769
[24] G. I. Bykovtsev, D. D. Ivlev, Teoriya plastichnosti, Dalnauka, Vladivostok, 1998
[25] A. Yu. Ishlinskii, D. D. Ivlev, Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001
[26] A. Nadai, Plastichnost i razrushenie tverdykh tel., v. 2, Mir, M:, 1969
[27] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v torii fazovykh prevraschenii, Nauka, M., 1990