To the calculation of plane stressed states of the theory of unsteady temperature stresses in elastoplastic bodies
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 131-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the example of the solution of the boundary value problem of the theory of temperature stresses about local heating and subsequent cooling of a circular plate made of elastoplastic material, the calculations of unsteady temperature stresses are compared either with or without allowance for the dependence of elastic moduli on temperature. It is shown that under the conditions of the dependence of the yield stress on temperature, the problem of calculating the planar temperature stresses under the condition of plastic flow of maximum tangential stresses turns out to be incorrect in its formulation, but it has a solution when using the conditions of the maximal reduced tangential stresses in the formulation and calculations. The conditions for the appearance of repeated plastic currents are noted and residual stresses are calculated.
@article{DVMG_2018_18_2_a0,
     author = {A. A. Burenin and V. Kaing and A. V. Tkacheva},
     title = {To the calculation of plane stressed states of the theory of unsteady temperature stresses in elastoplastic bodies},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {131--146},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a0/}
}
TY  - JOUR
AU  - A. A. Burenin
AU  - V. Kaing
AU  - A. V. Tkacheva
TI  - To the calculation of plane stressed states of the theory of unsteady temperature stresses in elastoplastic bodies
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 131
EP  - 146
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a0/
LA  - ru
ID  - DVMG_2018_18_2_a0
ER  - 
%0 Journal Article
%A A. A. Burenin
%A V. Kaing
%A A. V. Tkacheva
%T To the calculation of plane stressed states of the theory of unsteady temperature stresses in elastoplastic bodies
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 131-146
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a0/
%G ru
%F DVMG_2018_18_2_a0
A. A. Burenin; V. Kaing; A. V. Tkacheva. To the calculation of plane stressed states of the theory of unsteady temperature stresses in elastoplastic bodies. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 131-146. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a0/

[1] B. Boli, Dzh. Ueiner, Teoriya temperaturnykh napryazhenii, Mir, M., 1964

[2] G. Parkus, Neustanovivshiesya temperaturnye naryazheniya, Mir, M., 1969

[3] P. Perzyna, A. Sawezuk, “Problems of thermoplasticity”, Nuclear engineering and design., 1979, 94–201, North-Holland Publ. Co.

[4] Yu.N. Shevchenko, Termoplastichnost pri peremennykh nagruzheniyakh, Nukova dumka, Kiev, 1970

[5] A. A. Pozdeev, Yu. I. Nyashin, P. V. Trusov, Ostatochnye napryazheniya: teoriya i prilozheniya, Nauka, M., 1982

[6] A. A. Burenin, L. V. Kovtanyuk, Bolshie neobratimye deformatsii i uprugoe posledeistvie, Dalnauka, Vladivostok, 2013

[7] J. L. Chaboche, “Thermodynamically based viscoplastic constitutive equation: theory versus experiment”, ASME Winter Annual Meeting, 1991, 1–20, Atlanta

[8] N. Ohno, J. Wang, “Transformation of a nonlinear kinematic hardening rule toamultisurface formunder isothermal and nonisothermal conditions”, Int. J. Plasticity., 7 (1992), 879–891 | DOI

[9] L. V. Kovtanyuk, “Modelirovanie bolshikh uprugoplasticheskikh deformatsii v neizotermicheskom sluchae”, Dalnevost. mat.zhurnal., 5:1 (2004), 110–120

[10] V. S. Bondar, V. V. Danshin, A. A. Kondratenko, “Variant teorii termoplastichnosti”, Vestnik PNIPU. Seriya «Mekhanika», 2 (2015), 21–35

[11] U. Gamer, “A concise treatment of the shrink fit withelastic plastic hab”, Int. J. Solids. Struct., 29 (1992), 2463–2469 | DOI

[12] W. Mack, “Thermal assembly of an elastic–plastic hub and a solid shaft”, Arch. Appl. Mech., 63 (1993), 42–50 | DOI | Zbl

[13] A. Kovacs, “Residual Stresses in Thermally Loaded Shrink Fits Periodica Polytechnica”, Ser. Mech. Eng., 40:2 (1996), 103–112

[14] S. E. Aleksandrov, N. N. Chikanova, “Uprugoplasticheskoe napryazhenno-deformirovannoe sostoyanie v plastine s zapressovannym vklyucheniem pod deistviem temperaturnogo polya”, Izv. RAN MTT, 2000, no. 4, 149–158

[15] S. E. Aleksandrov, E. V. Lomakin, I.–R. Dzeng, “Reshenie termouprugoplasticheskoi zadachi dlya tonkogo diska iz plasticheski szhimaemogo materiala, podverzhennogo termicheskomu nagruzheniyu”, DAN, 443:3 (2012), 310–312 | MR

[16] S. E. Aleksandrov, E. A. Lyamina, O. V. Novozhilova, “Vliyanie zavisimosti predela tekuchesti ot temperatury na napryazhennoe sostoyanie v tonkom polom diske”, Problemy mashinostroeniya i nadezhnost mashin, 2013, no. 3, 43–48

[17] E. P. Dats, A. V. Tkacheva, R. V. Shport, “Sborka konstruktsii «koltso v koltse» sposobom goryachei posadki”, Vestnik ChGPU im. I. Ya. Yakovleva, seriya: mekhanika predelnogo sostoyaniya, 2014, no. 4(22), 204–213 | MR

[18] E. P. Dats, A. V. Tkacheva, “Tekhnologicheskie temperaturnye napryazheniya v protsessakh goryachei posadki tsilindricheskikh tel pri uchete plasticheskikh techenii”, PMTF, 57:3 (337) (2016), 208–216 | MR | Zbl

[19] A. A. Burenin, A. V. Tkacheva, G. A. Scherbatyuk, “K raschetu neustoyavshikhsya temperaturnykh napryazhenii v uprugoplasticheskikh telakh”, Vychislitelnaya mekhanika sploshnykh sred, 10:3 (2017), 245–259 | MR

[20] E. P. Dats, E. V. Murashkin, A. V. Tkacheva, G. A. Scherbatyuk, “Temperaturnye napryazheniya v uprugoplasticheskoi trube v zavisimosti ot vybora usloviya plastichnosti”, Mekhanika tverdogo tela, 1 (2018), 32–43

[21] Yu. N. Shevchenko, P. A. Steblyanko, A. D. Petrov, “Chislennye metody v nestatsionarnykh zadachakh teorii termoplastichnosti”, Problemy vychislitelnoi mekhaniki i prochnosti konstruktsii, 22 (2014), 250–264

[22] D. R. Bland, “Elastoplastic thick-walled tubes of work-hardening material subject to internal and external pressures and to temperature gradients”, J. of the Mechanics and Physics of Solids, 4 (1956), 209–-229 | DOI | MR | Zbl

[23] A. A. Burenin, L. V. Kovtanyuk, M. V. Polonik, “Vozmozhnost povtornogo plasticheskogo techeniya pri obschei razgruzki uprugoplasticheskoi sredy”, DAN, 375:6 (2000), 767–769

[24] G. I. Bykovtsev, D. D. Ivlev, Teoriya plastichnosti, Dalnauka, Vladivostok, 1998

[25] A. Yu. Ishlinskii, D. D. Ivlev, Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001

[26] A. Nadai, Plastichnost i razrushenie tverdykh tel., v. 2, Mir, M:, 1969

[27] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v torii fazovykh prevraschenii, Nauka, M., 1990