Properties of solutions of a complex heat transfer model
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 23-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonstationary complex heat transfer model including the heat equation and the nonstationary $P_1$ approximation of the radiative transfer equation is considered. The applicability of the steady-state equation for the radiative intensity to modelling of the complex heat transfer process is studied. It is shown that for large values of the parameter of speed of light the radiative intensity field comes close to the solution of the steady-state equation in a short time.
@article{DVMG_2018_18_1_a3,
     author = {G. V. Grenkin},
     title = {Properties of solutions of a complex heat transfer model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {23--33},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a3/}
}
TY  - JOUR
AU  - G. V. Grenkin
TI  - Properties of solutions of a complex heat transfer model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 23
EP  - 33
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a3/
LA  - ru
ID  - DVMG_2018_18_1_a3
ER  - 
%0 Journal Article
%A G. V. Grenkin
%T Properties of solutions of a complex heat transfer model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 23-33
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a3/
%G ru
%F DVMG_2018_18_1_a3
G. V. Grenkin. Properties of solutions of a complex heat transfer model. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 23-33. http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a3/

[1] E. Schneider, M. Seaïd, J. Janicka, A. Klar, “Validation of simplified $P_N$ models for radiative transfer in combustion systems”, Commun. Numer. Meth. Engng., 24:2 (2008), 85–96 | DOI | MR | Zbl

[2] A. Farina, A. Klar, R. M. M. Mattheij, A. Mikelić, N. Siedow, Mathematical models in the manufacturing of glass, Springer, 2011 | MR

[3] A. A. Amosov, “Nestatsionarnaya zadacha slozhnogo teploobmena v sisteme poluprozrachnykh tel c kraevymi usloviyami diffuznogo otrazheniya i prelomleniya izlucheniya”, Sovremennaya matematika. Fundamentalnye napravleniya, 59 (2016), 5–34

[4] A. A. Amosov, “Statsionarnaya zadacha slozhnogo teploobmena v sisteme poluprozrachnykh tel s kraevymi usloviyami diffuznogo otrazheniya i prelomleniya izlucheniya”, Zhurn. vychisl. matem. i matem. fiz., 57:3 (2017), 510–535 | DOI | Zbl

[5] M. F. Modest, Radiative heat transfer, 3rd edition, Academic press, 2013

[6] M. Frank, A. Klar, E. W. Larsen, S. Yasuda, “Time-dependent simplified $P_N$ approximation to the equations of radiative transfer”, J. Comput. Phys., 226:2 (2007), 2289–2305 | DOI | MR | Zbl

[7] E. Olbrant, E. W. Larsen, M. Frank, B. Seibold, “Asymptotic derivation and numerical investigation of time-dependent simplified $P_N$ equations”, J. Comput. Phys., 238 (2013), 315–336 | DOI | MR | Zbl

[8] G. V. Grenkin, A. Yu. Chebotarev, “Ustoichivost statsionarnykh reshenii diffuzionnoi modeli slozhnogo teploobmena”, Dalnevost. matem. zhurn., 14:1 (2014), 18–32 | MR | Zbl

[9] G. Grenkin, A. Chebotarev, “Lyapunov stability analysis of a radiative heat transfer model”, Matematicheskoe modelirovanie i kompyuternye tekhnologii [Elektronnyi resurs]: molodezhnaya konferentsiya-shkola, Vladivostok, 25–29 sentyabrya 2017 g.: sbornik materialov, Izd-vo Dalnevost. federal. un-ta, Vladivostok, 2017, S. 25–31

[10] G. V. Grenkin, A. Yu. Chebotarev, “Nestatsionarnaya zadacha slozhnogo teploobmena”, Zhurn. vychisl. matem. i matem. fiz., 54:11 (2014), 106–116 | MR

[11] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3 (2015), 776–784 | DOI | MR | Zbl

[12] R. Temam, Infinite-dimensional dymaical systems in mechanics and physics, Springer, 1998 | MR

[13] E. Zeidler, Nonlinear functional analysis and its applications. II/A: Linear monotone operators, Springer, 1990 | MR | Zbl

[14] https://github.com/grenkin/joker-fdm/tree/master/examples/bvp1d/heat1

[15] M. A. Mikheev, I. M. Mikheeva, Osnovy teploperedachi, Energiya, M., 1977