Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2018_18_1_a2, author = {V. A. Bykovskii}, title = {On the {Laurent} property of the {Somos-4} sequences}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {18--22}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a2/} }
V. A. Bykovskii. On the Laurent property of the Somos-4 sequences. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 18-22. http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a2/
[1] S. Fomin, A. Zelevinsky, “The Laurent phenomenon”, Adv. Appl. Math., 28 (2002), 119–144 | DOI | MR | Zbl
[2] A. N. W. Hone, C. S. Swart, “Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences”, Mathematical Proceedigs of the Cambridge Philosophical Society, 145 (2008), 65–85 | MR | Zbl
[3] Weierstrass K., Mathematische Werke von Karl Weierstrass, Bd. 5, Berlin, 1915
[4] V. A. Bykovskii, “Giperkvazimnogochleny i ikh prilozheniya”, Funkts. analiz i ego prilozheniya, 50:3 (2016), 34–46 | DOI | MR | Zbl
[5] R. Rochberg, L. Rubel, “A Functional Equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl
[6] A. N. W. Hone, “Elliptic curves and quadratic recurrence sequences”, Bulletin of the London Mathematical Society, 37, 2005, 161–171 | DOI | MR | Zbl
[7] R. Shipsey, Elliptic Divisibility Sequences, PhD Thesis, Goldsmith’s University of London, 2000
[8] C. Swart, Elliptic curves and related sequences, PhD Thesis, Royal Holloway and Bedford New College, University of London, 2003