Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2018_18_1_a13, author = {V. Ya. Prudnikov}, title = {On unicity theorems for solutions of variational inequalities}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {112--116}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a13/} }
V. Ya. Prudnikov. On unicity theorems for solutions of variational inequalities. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 112-116. http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a13/
[1] A. G. Podgaev, “O teoremakh edinstvennosti v zadache minimizatsii odnogo nedifferentsiruemogo funktsionala”, Dalnevostochnyi matematicheskii zhurnal, 1:1 (2000), 28–37
[2] G. Dyuvo, Zh. - L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR
[3] R. Namm, A. Zolotukhin, “On a method with prox-regularization for solving a simplified friction problev”, Report, Computer Center F. - E. B. of the Russian Academy of Sciences, and Khabarovsk's state University of Technology, Khabarovsk, 1993, 1–25
[4] R. Namm, A. Ya. Zolotukhin, “On a stable methods for solving variational inequalities in mechanics”, Journal of Harbin Institute of Technology (New Series), 7 (2000), 122–123
[5] R. V. Namm, A. G. Podgaev, Edinstvennost v odnom variatsionnom neraventstve s nedifferentsiruemym funktsionalom, otnosyaschimsya k zadache s treniem, Preprint E7 IPM DVO RAN, Dalnauka, Khabarovsk, 1994, 16 pp.
[6] V. Ya. Prudnikov, “O koertsitivnosti vypuklykh funktsionalov”, Izvestiya vuzov. Matematika, 2005, no. 9(520), 57–59 | MR
[7] Kh. Kim, R. V. Namm, E. M. Vikhtenko, G. Vu, “O regulyarizatsii v zadache Mosolova i Myasnikova s treniem na granitse oblasti”, Izvestiya vuzov. Matematika, 2009, no. 6, 10–19 | Zbl