The Cauchy problem for the radiatve transfer equation in an unbounded medium
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 101-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The correctness of the Cauchy problem of the integro-differential radiation transfer equation in a system of two unbounded subdomains, separated by a reflecting and refracting surface, is investigated. The existence of a unique strongly continuous semigroup of resolving operators of the Cauchy problem is proved. Conditions on the order of growth of the semigroup are obtained.
@article{DVMG_2018_18_1_a12,
     author = {I. V. Prokhorov and A. A. Sushchenko},
     title = {The {Cauchy} problem for the radiatve transfer  equation  in an unbounded medium},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {101--111},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a12/}
}
TY  - JOUR
AU  - I. V. Prokhorov
AU  - A. A. Sushchenko
TI  - The Cauchy problem for the radiatve transfer  equation  in an unbounded medium
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 101
EP  - 111
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a12/
LA  - ru
ID  - DVMG_2018_18_1_a12
ER  - 
%0 Journal Article
%A I. V. Prokhorov
%A A. A. Sushchenko
%T The Cauchy problem for the radiatve transfer  equation  in an unbounded medium
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 101-111
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a12/
%G ru
%F DVMG_2018_18_1_a12
I. V. Prokhorov; A. A. Sushchenko. The Cauchy problem for the radiatve transfer  equation  in an unbounded medium. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 101-111. http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a12/

[1] I. O. Yaroschuk, O. E. Gulin, Metod statisticheskogo modelirovaniya v zadachakh gidroakustiki, Dalnauka, Vladivostok, 2002

[2] G. V. Alekseev, Metod normalnykh voln v podvodnoi akustike, Dalnauka, Vladivostok, 2006

[3] I. V. Prokhorov, A. A. Suschenko, “Issledovanie zadachi akusticheskogo zondirovaniya morskogo dna metodami teorii perenosa izlucheniya”, Akusticheskii zhurnal, 61:3 (2015), 400–408 | DOI

[4] M. V. Maslennikov, “Problema Milna s anizotropnym rasseyaniem”, Tr.MIAN SSSR, 97 (1968), 3–158 | MR

[5] V. S. Potapov, “Metod resheniya uravneniya teorii perenosa dlya opticheski tolstogo sloya s otrazhayuschimi granitsami”, Teoreticheskaya i matematicheskaya fizika, 100:2 (1994), 287–302 | MR | Zbl

[6] V. S. Potapov, “Asimptoticheskie resheniya uravnenii teorii perenosa dlya opticheski tolstogo sloya s otrazhayuschimi granitsami”, Teoreticheskaya i matematicheskaya fizika, 100:3 (1994), 424–443 | MR | Zbl

[7] N. V. Konovalov, “Operator rasseyaniya polyarizovannogo izlucheniya i ego obschie svoistva. Kharakteristicheskoe uravnenie teorii perenosa polyarizovannogo izlucheniya”, Preprinty IPM im. M. V. Keldysha, 2009, 034, 43 pp.

[8] S. Chandrasekar, Perenos luchistoi energii, IL, M., 1953

[9] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr.MIAN SSSR, 61 (1961), 3–134

[10] V. M. Novikov, S.B. Shikhov, Teoriya parametricheskogo vozdeistviya na perenos neitronov, Energoizdat, M., 1982

[11] T. A. Germogenova, Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR

[12] I. V. Prokhorov, “Kraevaya zadacha teorii perenosa izlucheniya v neodnorodnoi srede s usloviyami otrazheniya na granitse”, Differentsialnye uravneniya, 36:6 (2000), 848-851 | MR | Zbl

[13] I. V. Prokhorov, “O razreshimosti kraevoi zadachi dlya uravneniya perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izvestiya RAN. Seriya matematicheskaya, 67:6 (2003), 169–192 | DOI | MR | Zbl

[14] I. V. Prokhorov, “O strukture mnozhestva nepreryvnosti resheniya kraevoi zadachi dlya uravneniya perenosa izlucheniya”, Matematicheskie zametki, 86:2 (2009), 256–272 | DOI | Zbl

[15] I. V. Prokhorov, “O razreshimosti nachalno-kraevoi zadachi dlya integro-differentsialnogo uravneniya”, Sibirskii matematicheskii zhurnal, 53:2 (2012), 377-387 | MR | Zbl

[16] I. V. Prokhorov, “Zadacha Koshi dlya uravneniya perenosa izlucheniya s obobschennymi usloviyami sopryazheniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 53:5 (2013), 75–766 | DOI

[17] A. A. Amosov, “Boundary value problem for the radiation transfer equation with reflection and refraction conditions”, Journal of Mathematical Sciences, 191:2 (2013), 101-149 | DOI | MR | Zbl

[18] A. A. Amosov, “Boundary Value Problem for the Radiation Transfer Equation with Diffuse Reflection and Refraction Conditions”, Journal of Mathematical Sciences, 193:2 (2013), 151-176 | DOI | MR | Zbl

[19] I. V. Prokhorov, A. A. Suschenko, “O korrektnosti zadachi Koshi dlya uravneniya perenosa izlucheniya s frenelevskimi usloviyami sopryazheniya”, Sibirskii matematicheskii zhurnal, 56:4 (2015), 922–933 | MR | Zbl

[20] A. Amosov, M. Shumarov, “Boundary value problem for radiation transfer equation in multilayered medium with reflection and refraction conditions”, Applicable Analysis, 95:7 (2016) | DOI | MR | Zbl

[21] A. A. Amosov, Kraevye zadachi dlya uravneniya perenosa s usloviyami otrazheniya i prelomleniya, «Tamara Rozhkovskaya», Novosibirsk, 2017

[22] I. V. Prokhorov, A. A. Suschenko, A. Kim, “Nachalno-kraevaya zadacha dlya uravneniya perenosa izlucheniya s diffuznymi usloviyami sopryazheniya”, Sibirskii zhurnal industrialnoi matematiki, 20:1 (2017), 75—85 | Zbl

[23] M. Boulanouar, H. Emamirad, “The Asymptotic Behavior of a Transport Equation in Cell Population Dynamics with a Null Maturation Velocity”, Journal of Mathematical Analysis and Applications, 243:1 (2000), 47–63 | DOI | MR | Zbl

[24] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied mathematics science, 44, Springer-Verlag New-York, 1983 | DOI | MR | Zbl