On the lemniscates of rational functions
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 201-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

The impact of the connectivity of some lemniscates of the rational function on the absolute value of its derivative is considered. The role of the lemniscates in the problems of the extremal decomposition of the Riemann sphere is discussed.
@article{DVMG_2017_17_2_a7,
     author = {V. N. Dubinin and A. S. Afanaseva-Grigoreva},
     title = {On the lemniscates of rational functions},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {201--209},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a7/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - A. S. Afanaseva-Grigoreva
TI  - On the lemniscates of rational functions
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 201
EP  - 209
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a7/
LA  - ru
ID  - DVMG_2017_17_2_a7
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A A. S. Afanaseva-Grigoreva
%T On the lemniscates of rational functions
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 201-209
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a7/
%G ru
%F DVMG_2017_17_2_a7
V. N. Dubinin; A. S. Afanaseva-Grigoreva. On the lemniscates of rational functions. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 201-209. http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a7/

[1] V. N. Dubinin, “Lemniskata i neravenstva dlya logarifmicheskoi emkosti kontinuuma”, Matem. zametki, 80:1 (2006), 33–37 | DOI | MR | Zbl

[2] V. N. Dubinin, “O komponentakh lemniskaty, ne soderzhaschikh kriticheskikh tochek polinoma, otlichnykh ot ego nulei”, Analitichskaya teoriya chisel i teoriya funktsii. 25, Zap. nauchn. sem. POMI, 383 (2010), 77–85

[3] V. N. Dubinin, “Nekotorye neravenstva dlya polinomov i ratsionalnykh funktsii, svyazannye s lemniskatami”, Analitichskaya teoriya chisel i teoriya funktsii. 27, Zap. nauchn. sem. POMI, 404 (2012), 83–99

[4] V. N. Dubinin, “Ob odnoi ekstremalnoi zadache dlya kompleksnykh polinomov s ogranicheniyami na ikh kriticheskie znacheniya”, Sib. matem. zhurn., 55:1 (2014), 79–89 | MR | Zbl

[5] V. N. Dubinin, “Ekstremalnaya zadacha dlya proizvodnoi ratsionalnoi funktsii”, Matem. zametki, 100:5 (2016), 732–738 | DOI | MR | Zbl

[6] W. K. Hayman, Research Problems in Function Theory, Univ. of London. The Athlone Press, London, 1967 | MR | Zbl

[7] P. Erdos, Some of My Favorite Unsolved Problems. A Tribute to Paul Erdos, Cambridge Univ. Press, Cambridge, 1990 | MR

[8] A. Eremenko, L. Lempert, “An extremal problem for polynomials”, Proc. Amer. Math. Soc., 122:1 (1994), 191–193 | DOI | MR | Zbl

[9] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii”, Algebra i analiz, 9:3 (1997), 41–103, 9:5, 1–50 | Zbl

[10] G. V. Kuz'mina, “Geometric function theory. Jenkins results. The method of modules of curve families”, Analitichskaya teoriya chisel i teoriya funktsii. 31, Zap. nauchn. sem. POMI, 445 (2016), 181–249 | MR

[11] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR

[12] A. B. Bogatyrev, “Chebyshevskoe predstavlenie ratsionalnykh funktsii”, Matem. sb., 201:11 (2010), 19–40 | DOI | MR

[13] A. B. Bogatyrev, “How Many Zolotarev Fractions are There?”, 2015, arXiv: 1511.05346 | MR

[14] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[15] V. N. Dubinin, L. V. Kovalev, “Privedennyi modul kompleksnoi sfery”, Analitichskaya teoriya chisel i teoriya funktsii. 15, Zap. nauchn. sem. POMI, 254 (1998), 76–94