Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2017_17_2_a4, author = {M. A. Guzev and A. A. Dmitriev}, title = {Oscillatory-damping temperature behavior in one-dimensional harmonic model of a perfect crystal}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {170--179}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a4/} }
TY - JOUR AU - M. A. Guzev AU - A. A. Dmitriev TI - Oscillatory-damping temperature behavior in one-dimensional harmonic model of a perfect crystal JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2017 SP - 170 EP - 179 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a4/ LA - ru ID - DVMG_2017_17_2_a4 ER -
%0 Journal Article %A M. A. Guzev %A A. A. Dmitriev %T Oscillatory-damping temperature behavior in one-dimensional harmonic model of a perfect crystal %J Dalʹnevostočnyj matematičeskij žurnal %D 2017 %P 170-179 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a4/ %G ru %F DVMG_2017_17_2_a4
M. A. Guzev; A. A. Dmitriev. Oscillatory-damping temperature behavior in one-dimensional harmonic model of a perfect crystal. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 170-179. http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a4/
[1] Chandrasekharaiah D. S., “Thermo-elasticity with second sound”, Appl. Mech. Rev., 39:3 (1986), 355–376 | DOI | Zbl
[2] Rieder Z., Lebowitz J. L., Lieb E., “Properties of a Harmonic Crystal in a Stationary Nonequilibrium State”, J. Math. Phys, 8:5 (1967), 1073–1078 | DOI
[3] Cattaneo C., “Sulla conduzione de calore”, Atti Semin. Mat. Fis. Univ. Modena, 3 (1948), 3 | MR
[4] Cattaneo C., “A form of heat conduction equation which eliminates the paradox of instantaneous propagation”, Comptes Rendus, 247 (1958), 431
[5] Vernotte P., “Les paradoxes de la theorie continue de l'equation de la chaleur”, Comptes Rendus, 256 (1958), 3154 | MR
[6] Vernotte P., “Some possible complications in the phenomena of thermal conduction”, Comptes Rendus, 252 (1961), 2190
[7] Sadd M. H., Didlake J. E., “Non-Fourier Melting of a Semi-Infinite Solid”, J. Heat Transfer, 99:1 (1977), 25–28 | DOI
[8] Abdulmuhsen Ali, “Statistical Mechanical Derivation of Cattaneo's Heat Flux Law”, Journal of Thermophysics and Heat Transfer, 13:4 (1999), 544–545 | DOI
[9] Bahrami A., Hoseinzadeh S., Ghasemiasl R., “Solution of Non-Fourier Temperature Field in a Hollow Sphere under Harmonic Boundary Condition”, Applied Mechanics and Materials, 772 (2015), 197–203 | DOI
[10] Polyanin A. D., Vyazmin A. V., “Differential-difference heat-conduction and diffusion models and equations with a finite relaxation time”, Theoretical Foundations of Chemical Engineering, 47:3 (2013), 217–224 | DOI
[11] Krivtsov A. M., “Rasprostranenie tepla v beskonechnom garmonicheskom kristalle”, DAN, 464:2 (2015), 162–166 | MR
[12] “Razlichnye formy predstavleniya resheniya odnomernoi garmonicheskoi modeli kristalla”, Dalnevostochnyi matem. zhurnal, 17:1 (2017), 30–47 | MR
[13] Fedoryuk M. V., Asimptorika: integraly i ryady (SMB), Nauka: GRFML, Moskva, 1987 | MR