Modified dual scheme for finite-dimensional and infinite-dimensional convex optimization problems
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 158-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider modified duality methods for the finite0dimensional convex optimization problem and the semi-coercive Signorini problem. Duality relations for the direct and dual problems are given without assuming the solvability of dual problem.
@article{DVMG_2017_17_2_a3,
     author = {E. M. Vikhtenko and G. S. Woo and R. V. Namm},
     title = {Modified dual scheme for finite-dimensional and infinite-dimensional convex optimization problems},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {158--169},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a3/}
}
TY  - JOUR
AU  - E. M. Vikhtenko
AU  - G. S. Woo
AU  - R. V. Namm
TI  - Modified dual scheme for finite-dimensional and infinite-dimensional convex optimization problems
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 158
EP  - 169
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a3/
LA  - ru
ID  - DVMG_2017_17_2_a3
ER  - 
%0 Journal Article
%A E. M. Vikhtenko
%A G. S. Woo
%A R. V. Namm
%T Modified dual scheme for finite-dimensional and infinite-dimensional convex optimization problems
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 158-169
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a3/
%G ru
%F DVMG_2017_17_2_a3
E. M. Vikhtenko; G. S. Woo; R. V. Namm. Modified dual scheme for finite-dimensional and infinite-dimensional convex optimization problems. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 158-169. http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a3/

[1] A. M. Khludnev, Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[2] E. M. Vikhtenko, R. V. Namm, “O metode dvoistvennosti dlya resheniya modelnoi zadachi s treschinoi”, Tr. in-ta matem. i mekh. UrO RAN, 22:1 (2016), 36–43 | MR

[3] K. Grossman, A. A. Kaplan, Nelineinoe programmirovanie na osnove bezuslovnoi optimizatsii, Nauka, Novosibirsk, 1981 | MR

[4] I. V. Konnov, Nelineinaya optimizatsiya i variatsionnye neravenstva, Izd-vo Kazanskogo gos. un-ta, Kazan, 2013

[5] E. A. Mukhacheva, G. I. Rubinshtein, Matematicheskoe programmirovanie, Nauka, Novosibirsk, 1987 | MR

[6] E. G. Golshtein, N. V. Tretyakov, Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR

[7] A. V. Zhiltsov, R. V. Namm, “Metod mnozhitelei Lagranzha v zadache konechnomernogo vypuklogo programmirovaniya”, Dalnevost. matem. zhurn., 15:1 (2015), 53–60 | MR | Zbl

[8] R. V. Namm, E. M. Vikhtenko, Metody vypukloi optimizatsii: uchebnoe posobie, Izd-vo Tikhookean. gos. un-ta, Khabarovsk, 2017

[9] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M, 1983 | MR

[10] E. M. Vikhtenko, N. N. Maksimova, R. V. Namm, “Funktsionaly chuvstvitelnosti v variatsionnykh neravenstvakh mekhaniki i ikh prilozhenie k skhemam dvoistvennosti”, Sibirskii zh. vychisl. matem., 17:1 (2014), 43–52 | MR | Zbl

[11] Robert V. Namm, Gyungsoo Woo, “Sensitivity functionals in convex optimization problem”, Filomat, 30:14 (2016), 3681-3687 | DOI | MR | Zbl