Eichler – Shimura relations for theta functions
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 152-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the three-term identity of the Jacobi theta functions in two variables is interpreted as the Eichler-Shimura relation. This allows us to construct new classes of identities of this type with the help of Hecke operators.
@article{DVMG_2017_17_2_a2,
     author = {V. A. Bykovskii},
     title = {Eichler {\textendash} {Shimura} relations for theta functions},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {152--157},
     year = {2017},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a2/}
}
TY  - JOUR
AU  - V. A. Bykovskii
TI  - Eichler – Shimura relations for theta functions
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 152
EP  - 157
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a2/
LA  - ru
ID  - DVMG_2017_17_2_a2
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%T Eichler – Shimura relations for theta functions
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 152-157
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a2/
%G ru
%F DVMG_2017_17_2_a2
V. A. Bykovskii. Eichler – Shimura relations for theta functions. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 152-157. http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a2/

[1] C. G. J. Jacobi, Gesammelte Werke, v. 1, Berlin, 1881

[2] H. M. Weber, Lehrbuch der Algebra, v. 3, Braunschweig, 1908 | MR

[3] A. E. Polischuk, Abelevy mnogoobraziya, teta-funktsii i preobrazovanie Fure, MTsNMO, M., 2010 | MR

[4] Yu. I. Manin, “Parabolicheskie tochki i dzeta-funktsii modulyarnykh krivykh”, Izv. AN SSSR, seriya matem., 36 (1972), 19–66 | Zbl

[5] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press., NJ, 1971 | MR | Zbl