On the distribution of integer points on a hyperboloid
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 147-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method for studying integer points on hyperboloids (Linnik problem) is proposed. It is based on the spectral theory of automorphic functions. In doing so an asymptotic formula with a  fundamentally new power saving  error term  is obtained.
@article{DVMG_2017_17_2_a1,
     author = {V. A. Bykovskii},
     title = {On the distribution of integer points on a hyperboloid},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {147--151},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a1/}
}
TY  - JOUR
AU  - V. A. Bykovskii
TI  - On the distribution of integer points on a hyperboloid
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 147
EP  - 151
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a1/
LA  - ru
ID  - DVMG_2017_17_2_a1
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%T On the distribution of integer points on a hyperboloid
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 147-151
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a1/
%G ru
%F DVMG_2017_17_2_a1
V. A. Bykovskii. On the distribution of integer points on a hyperboloid. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 147-151. http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a1/

[1] Yu. V. Linnik, Ergodicheskie svoistva algebraicheskikh polei, Leningrad, 1967, 208 pp. | MR

[2] D. A. Burgess, “On character sums and L-series. II”, Proc. Lond. Math. Soc., 13 (1963), 524–536 | DOI | MR | Zbl

[3] H. Ivaniec, “Fourier coefficients of modular forms of half integral weight”, Invent. Math., 87 (1987), 385–402 | DOI | MR

[4] W. J. Duke, J. Friedlander, H. Ivaniec, “Bounds for automorphic L-function”, Invent. Math., 112:1 (1993), 1–8 | DOI | MR | Zbl

[5] V. A. Bykovskii, “A trace formula for the scalar product of Hecke series and its applications”, J. Math. Sci., 89:1 (1998), 915–932 | DOI | MR

[6] B. Conrey, H. Ivaniec, “The cubic moment of central values of automorphic L-functions”, Ann. of Math. Second Series, 151:3 (2000), 1175–1216 | DOI | MR | Zbl

[7] V. A. Bykovskii, Nekotorye formuly summirovaniya arifmeticheskogo tipa i ikh prilozheniya, Preprint, Vychislitelnyi tsentr DVNTs AN SSSR, Vladivostok, 1986, 38 pp.