@article{DVMG_2017_17_2_a0,
author = {O. V. Bondrova and N. I. Golovko and T. {\CYRA}. Zhuk},
title = {Derivation of {Kolmogorov} {\textendash} {Chapman} type equations with integrated operator},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {135--146},
year = {2017},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a0/}
}
TY - JOUR AU - O. V. Bondrova AU - N. I. Golovko AU - T. А. Zhuk TI - Derivation of Kolmogorov – Chapman type equations with integrated operator JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2017 SP - 135 EP - 146 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a0/ LA - ru ID - DVMG_2017_17_2_a0 ER -
O. V. Bondrova; N. I. Golovko; T. А. Zhuk. Derivation of Kolmogorov – Chapman type equations with integrated operator. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 135-146. http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a0/
[1] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR
[2] V. F. Zaitsev, A. D. Polyanin, Spravochnik po obyknovennym differentsialnym uravneniyam, FIZMALIT, M, 2001 | MR
[3] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, Fazis, M., 1998 | MR
[4] A. D. Venttsel, Kurs teorii sluchainykh protsessov, Nauka, M., 1996 | MR
[5] C. Karl, Osnovy teorii sluchainykh protsessov, Mir, M., 1973 | MR
[6] Yu. B. Germeier, Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971 | MR
[7] A. Takha Khemdi, Vvedenie v issledovanie operatsii, Vilyams, M., 2007 | MR
[8] L. Kleinrok, Teoriya massovogo obsluzhivaniya, Mashinostroenie, M., 1979
[9] V. V. Katrakhov, N. I. Golovko, D. E. Ryzhkov, Vvedenie v teoriyu markovskikh dvazhdy stokhasticheskikh sistem massovogo obsluzhivaniya, Izd-vo DVGU, Vladivostok, 2005
[10] I. N. Kovalenko, Teoriya massovogo obsluzhivaniya, Teoriya veroyatnostei. Matematicheskaya statistika. Teoreticheskaya kibernetika, 1971
[11] V. V. Rykov, Upravlyaemye sistemy massovogo obsluzhivaniya, Teoriya veroyatnostei. Matematicheskaya statistika. Teoreticheskaya kibernetika, 1975
[12] A. I. Lyakhov, “Asimptoticheskii analiz zamknutykh setei ocheredei, vklyuchayuschikh ustroistva s peremennoi intensivnostyu obsluzhivaniya”, Avtomatika i telemekhanika, 3 (1997), 131–143 | MR | Zbl
[13] C. Baiocchi, C. Capolo, V. Comincioly, G. Seraggi, “A mathematical model for transient analysis of computer systems”, Performance Evaluation, 3 (1992), 247–264 | DOI | MR
[14] P. A. W. Lewis, G. S. Shedler, “Statistical analysis of non-stationary series of events in a data base system”, IBM Journal of Research and Development, 20 (1976), 465–482 | DOI | MR | Zbl
[15] A. Svoronos, G. Linda, “A convexity result for single-server exponention loss systems with non-stationary arrivals”, J. Appl. Probab., 25 (1988), 224–227 | DOI | MR | Zbl
[16] R. A. Upton, S. K. Tripathi, “An approximate transient analysis of the $M(t)/M/1$ queue”, Performance Evaluation, 2 (1982), 118–132 | DOI | Zbl
[17] L. A. Rastrigin, Sovremennye printsipy upravleniya slozhnymi ob'ektami, Sov. radio, M., 1978
[18] Ya. A. Kogan, V. G. Litvin, “K vychisleniyu kharakteristik sistem massovogo obsluzhivaniya s konechnym buferom, rabotayuschei v sluchainoi srede”, Avtomatika i telemekhanika, 12 (1976), 49–57 | Zbl
[19] N. I. Golovko, V. O. Karetnik, V. E. Tanin, I. I. Safonyuk, “Issledovanie modelei sistem massovogo obsluzhivaniya v informatsionnykh setyakh”, Sibirskii zhurnal industrialnoi Matematiki, 2(34) (2008), 50–64 | Zbl
[20] N. I. Golovko, V. V. Katrakhov, Primenenie modelei SMO v informatsionnykh setyakh, Izd-vo TGEU, Vladivostok, 2008
[21] N. I. Golovko, V. V. Katrakhov, Analiz sistem massovogo obsluzhivaniya, funktsioniruyuschikh v sluchainoi srede, Izd-vo DVGAEU, Vladivostok, 2000, 400 pp.
[22] B. V. Gnedenko, Kurs teorii veroyatnostei, Editorial URSS, Moskva, 2005, 448 pp. | MR