Derivation of Kolmogorov -- Chapman type equations with integrated operator
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 135-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work the authors derived equations of Kolmogorov – Chapman type with the integral operator of theoretical and applied importance in the differential equations theory and various applications, for example, of the queueing theory, the population evolution theory, etc. In the work we consider a class of queueing systems with exponential service on one technician device, the input is supplied twice stochastic Poisson flow whose intensity is an spasmodic process at intervals of constancy, distributed according to the exponential law. Models of queueing ystems can have the infinite or the final storage device including zero capacity (queueing system with refusals).
@article{DVMG_2017_17_2_a0,
     author = {O. V. Bondrova and N. I. Golovko and T. {\CYRA}. Zhuk},
     title = {Derivation of {Kolmogorov} -- {Chapman} type equations with integrated operator},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {135--146},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a0/}
}
TY  - JOUR
AU  - O. V. Bondrova
AU  - N. I. Golovko
AU  - T. А. Zhuk
TI  - Derivation of Kolmogorov -- Chapman type equations with integrated operator
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 135
EP  - 146
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a0/
LA  - ru
ID  - DVMG_2017_17_2_a0
ER  - 
%0 Journal Article
%A O. V. Bondrova
%A N. I. Golovko
%A T. А. Zhuk
%T Derivation of Kolmogorov -- Chapman type equations with integrated operator
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 135-146
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a0/
%G ru
%F DVMG_2017_17_2_a0
O. V. Bondrova; N. I. Golovko; T. А. Zhuk. Derivation of Kolmogorov -- Chapman type equations with integrated operator. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 135-146. http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a0/

[1] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR

[2] V. F. Zaitsev, A. D. Polyanin, Spravochnik po obyknovennym differentsialnym uravneniyam, FIZMALIT, M, 2001 | MR

[3] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, Fazis, M., 1998 | MR

[4] A. D. Venttsel, Kurs teorii sluchainykh protsessov, Nauka, M., 1996 | MR

[5] C. Karl, Osnovy teorii sluchainykh protsessov, Mir, M., 1973 | MR

[6] Yu. B. Germeier, Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971 | MR

[7] A. Takha Khemdi, Vvedenie v issledovanie operatsii, Vilyams, M., 2007 | MR

[8] L. Kleinrok, Teoriya massovogo obsluzhivaniya, Mashinostroenie, M., 1979

[9] V. V. Katrakhov, N. I. Golovko, D. E. Ryzhkov, Vvedenie v teoriyu markovskikh dvazhdy stokhasticheskikh sistem massovogo obsluzhivaniya, Izd-vo DVGU, Vladivostok, 2005

[10] I. N. Kovalenko, Teoriya massovogo obsluzhivaniya, Teoriya veroyatnostei. Matematicheskaya statistika. Teoreticheskaya kibernetika, 1971

[11] V. V. Rykov, Upravlyaemye sistemy massovogo obsluzhivaniya, Teoriya veroyatnostei. Matematicheskaya statistika. Teoreticheskaya kibernetika, 1975

[12] A. I. Lyakhov, “Asimptoticheskii analiz zamknutykh setei ocheredei, vklyuchayuschikh ustroistva s peremennoi intensivnostyu obsluzhivaniya”, Avtomatika i telemekhanika, 3 (1997), 131–143 | MR | Zbl

[13] C. Baiocchi, C. Capolo, V. Comincioly, G. Seraggi, “A mathematical model for transient analysis of computer systems”, Performance Evaluation, 3 (1992), 247–264 | DOI | MR

[14] P. A. W. Lewis, G. S. Shedler, “Statistical analysis of non-stationary series of events in a data base system”, IBM Journal of Research and Development, 20 (1976), 465–482 | DOI | MR | Zbl

[15] A. Svoronos, G. Linda, “A convexity result for single-server exponention loss systems with non-stationary arrivals”, J. Appl. Probab., 25 (1988), 224–227 | DOI | MR | Zbl

[16] R. A. Upton, S. K. Tripathi, “An approximate transient analysis of the $M(t)/M/1$ queue”, Performance Evaluation, 2 (1982), 118–132 | DOI | Zbl

[17] L. A. Rastrigin, Sovremennye printsipy upravleniya slozhnymi ob'ektami, Sov. radio, M., 1978

[18] Ya. A. Kogan, V. G. Litvin, “K vychisleniyu kharakteristik sistem massovogo obsluzhivaniya s konechnym buferom, rabotayuschei v sluchainoi srede”, Avtomatika i telemekhanika, 12 (1976), 49–57 | Zbl

[19] N. I. Golovko, V. O. Karetnik, V. E. Tanin, I. I. Safonyuk, “Issledovanie modelei sistem massovogo obsluzhivaniya v informatsionnykh setyakh”, Sibirskii zhurnal industrialnoi Matematiki, 2(34) (2008), 50–64 | Zbl

[20] N. I. Golovko, V. V. Katrakhov, Primenenie modelei SMO v informatsionnykh setyakh, Izd-vo TGEU, Vladivostok, 2008

[21] N. I. Golovko, V. V. Katrakhov, Analiz sistem massovogo obsluzhivaniya, funktsioniruyuschikh v sluchainoi srede, Izd-vo DVGAEU, Vladivostok, 2000, 400 pp.

[22] B. V. Gnedenko, Kurs teorii veroyatnostei, Editorial URSS, Moskva, 2005, 448 pp. | MR