The solvability of the boundary value problem for the system of thermoelasticity equations in space
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 98-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

The proposed and substantiated boundary value problem for the linearized three-dimensional system of thermoelasticity equations describing the deformation of a solid body because of its temperature. The existence of weak solutions was proved.
@article{DVMG_2017_17_1_a7,
     author = {E. P. Sulyandziga},
     title = {The solvability of the boundary value problem for the system of thermoelasticity equations in space},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {98--109},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a7/}
}
TY  - JOUR
AU  - E. P. Sulyandziga
TI  - The solvability of the boundary value problem for the system of thermoelasticity equations in space
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 98
EP  - 109
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a7/
LA  - ru
ID  - DVMG_2017_17_1_a7
ER  - 
%0 Journal Article
%A E. P. Sulyandziga
%T The solvability of the boundary value problem for the system of thermoelasticity equations in space
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 98-109
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a7/
%G ru
%F DVMG_2017_17_1_a7
E. P. Sulyandziga. The solvability of the boundary value problem for the system of thermoelasticity equations in space. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 98-109. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a7/

[1] A. D. Kovalenko, Termouprugost, Izdatelskoe ob'edinenie «Vischa shkola», Kiev, 1975

[2] P. V. Bazylev, A. V. Izotov, A. I. Kondratev, V. A. Lugovoi, K. N. Okishev, “Gosudarstvennyi pervichnyi etalon edinits skorostei rasprostraneniya prodolnykh, sdvigovykh i poverkhnostnykh ultrazvukovykh voln v tverdykh sredakh GET 189-2012.”, Izmeritelnaya tekhnika, 7:7 (2013), 6–10

[3] A. P. Filin, Prikladnaya mekhanika tverdogo deformiruemogo tela: soprotivlenie materialov s elementami teorii sploshnykh sred i stroitelnoi mekhaniki, Nauka, M., 1978

[4] V. Novatskii, Dinamicheskie zadachi termouprugosti, Mir, M., 1970

[5] A. A. Samarskii, P. N. Vabischevich, Vychislitelnaya teploperedacha, Editorial URSS, M., 2003

[6] E. P. Sulyandziga, “O kraevykh zadachakh dlya odnomernoi sistemy uravnenii termouprugosti”, Vestnik TOGU, 3(34) (2014), 29–38

[7] Y. Sun, D. Fang, M. Saka and A. K. Soh, “Laser-Induced Vibrations of Micro-Beams under Different Boundery Conditions”, International Journal of Solids and Structures, 45:7–8 (2008), 1993–2013 | DOI | Zbl

[8] H. M. Youssef, A. S. Al-Felali, “Generalized Thermoelasticity Problem of Material Subjected to Thermal Loading Due to Laser Pulse”, Applied Mathematics, 3 (2012), 142–146 | DOI | MR

[9] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[10] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR